Preparation IS Students to Deal With Ethical Issues

By: J. Daniel Couger
Computer and Management Science
University of Colorado,
Colorado Springs
Colorado Springs, Colorado 80933

Abstract
The recent series of ethics violations in business (e.g., insider trading) has caused a number of firms to begin courses in ethics for employees. Unless professionals improve their ethical practices, legislation will force them to do so. The ACM and DPMA curriculum recommendations include ethics topics. An important issue is the proper education of IS students to deal with on-the-job ethical situations. Unfortunately, ethics education gets lost among the myriad of subjects to be taught in IS courses. There is an effective pedagogical approach for this material. The approach requires students to determine how they would act in various ethical scenarios. This "personalization" method may be the first step toward proper ethical behavior in the workplace. While not a rigorous scientific treatment of the subject, the classroom experiences reported here may be helpful for IS faculty and IS trainers as they develop improved ethics instruction.

Keywords: Ethics, training
ACM Categories: K.7.m, K.6.1

Introduction
"I never thought ethics was something that could be formally taught. I thought ethics was something you learned growing up at home, in school, and in church."

Robert Fomon, chairman of E.F. Hutton and Company, made the above comment while discussing his company's guilty plea to 2,000 counts of fraud because of checking-account overdrafts. E.F. Hutton now sends its employees to a course on ethical practices (Business Week, 1985). The Boesky case and other insider trading cases have elevated interest in business ethics to a new high. However, the surge in interest in ethical issues is not confined to the financial industry. The computer industry has been plagued with problems for many years, to the extent that legislation has been introduced to try to control the problem. The "hackers" legislation is only one example. One would hope that professionals in the field would take personal responsibility in applying ethics to their daily activities, rather than be forced through external pressures (i.e., legislation) to conform to a code of ethics.

Buck Bloombecker, director of the National Center for Computer Crime Data in Los Angeles, frequently lectures on ethics to computer classes around the country. Recently a student commented during his lecture that "being ethical only allows other people to take advantage of you ... but I'm not a computer criminal." Bloombecker (1988) says such attitudes prevail in schools where there is no ethics in the computer curriculum. "Faculty members praise me," he says, "for coming in to town to speak about computer ethics. They explain that with all the important changes in technology, they just don't have the time to teach that subject" (p. 17).

Both the ACM and DPMA curriculum committees include ethical issues in the recommended curriculum for IS majors. Both committees debated whether a full course on the subject was justified in light of all the other material needing coverage. For that reason, I was one of the ACM committee members who believed that a full course was unnecessary. But I do include two one-hour sessions on ethics in the capstone course for undergraduate IS majors. However, I experimented with a variety of approaches before I found one that effectively personalizes what many students view to be an abstract subject. This article will cover three approaches to
teaching ethics materials and then concentrate on one that appears to be the most successful. My definition of success includes both pedagogical methods and behavioral results.

Before discussing pedagogy, however, it is useful to review the computer-specific ethical issues that arise as a result of the roles of computers, such as:

1. Repositories and processors of information. Unauthorized use of otherwise unused computer services or of information stores in computers raise questions of appropriateness or fairness.

2. Producers of new forms and types of assets. For example, computer programs are new types of assets, subject to the same concepts of ownership as other assets.

3. Instruments of acts. To what degree must computer services and users of computers, data, and programs be responsible for the integrity and appropriateness of computer output?

4. Symbols of intimidation and deception. The images of computers as thinking machines, absolute truth products, infallible, subject to blame, replacements for human errors, and as anthropomorphic in nature should be carefully considered.

These roles of computers have been carefully documented at SRI International in a study of over 550 reported cases of intentionally caused losses associated with computer science and technology (Parker, 1980). These cases serve as a good starting basis for developing a pedagogy for conveying ethics to students majoring in IS. The evolution of my own pedagogical approaches is provided next.

Pedagogical Approach #1

"Studying ethics is like taking a flu shot," according to one of my students. "You know it is necessary, but there is no way to make it enjoyable." I heard that comment following my initial pedagogical approach to the subject. Students weren't very excited by my introducing the subject with a lecture on the code of ethics for the IS profession. I began with a dictionary definition of ethic: "a principle of right or good conduct, or a body of such principles." The "body" of principles appropriate to our field has been clearly defined in the ACM and DPMA codes of ethics (Appendices A and B).

After a brief lecture on the need for ethics in the field, students were asked to compare the two codes of ethics to determine differences. This comparison generated good discussion on what had been included in the code and why. Nevertheless, the approach failed to force students to review their own codes of ethics in light of the professional codes. They did not internalize the material. A change in pedagogy was needed.

Pedagogical Approach #2

For my second evolutionary stage in teaching ethics in IS, I decided to concentrate on examples that would show students how professionals in the field behave in real-life ethical situations. Computerworld proved to be a good source of articles on violations of ethics codes. In discussing the cases in class, one group of students was asked to take the position of the guilty person and rationalize the behavior. Another group played the role of an ACM code of ethics committee evaluating the behavior. The approach improved student involvement and generated some interesting discussions.

A few students began to personalize the ethics issues as a result of the revised pedagogical approach. But the majority did not, based on classroom discussion. It was obvious that another approach was needed to try to cause each student to evaluate his or her own ethical code against the professional codes.

Pedagogical Approach #3

Six years ago, my third evolutionary stage of teaching ethics to IS majors began. This approach proved successful in getting each student to personalize the topic. The topic was initiated with the following question:

You have purchased a Microsoft software package to use at work. You paid for it personally. The license agreement stipulates "you may use the program on a single machine." You want to make a copy to use on your home computer. You will make sure that you are the only person using the package. This approach appears to
adhere to the "spirit" though not the "letter" of the license agreement. Is this consistent with the code of ethics of our profession?

Starting the discussion on the issue of copying of software makes it immediately relevant to all students. It perks their attention. However, the ethics codes contain nothing on this specific issue. The DPMA code provides a general statement: "In recognition of my obligation to society I shall support, respect and abide by the appropriate local, state, provincial and federal laws." The ACM code has only one canon that relates to this issue, also quite general: "An ACM member shall act at all times with integrity."

Since this particular case requires personal interpretation of the code, discussions become quite heated. I explain that, by signing the license agreement, individuals are obligated to avoid copying the software. The majority of students oppose that view. They rationalize copying software for a myriad of reasons — all of which judge the issue.

As follow-up, I use two cases from Ethical Conflicts in Computer Sciences and Technology. The author, Donn Parker (1980), is the foremost authority on computer crime. The book contains the ethics codes of ACM, the Institute for Certification of Computer Professionals, and the British Computer Society. However, the key content is a series of ethics scenarios for the computer field, along with evaluation of each ethics issue by a panel of experts. There are 47 scenarios, each one page in length. Under the auspices of the AFIPS (American Federation of Information Processing Societies), 35 persons were selected to develop opinions on each scenario. After studying the facts of a case, each person decided whether it represented ethical conduct, unethical conduct or was not an ethical issue. These persons were "leaders in the computer field, lawyers and experts in ethical philosophy." Next, a workshop of these persons was held to discuss the results. The results were intended as a way for individuals or groups to benchmark their views against those of experts in the field.

Two scenarios in the book are especially appropriate for IS students. Each student is asked to read the scenarios and then make a decision about the issues. I tabulate the results and report them to the class. Each student is then asked to compare his or her own decision with the class mean and with the AFIPS panel of experts. The result is a real eye opener for students, because they differ so much from the panel of experts.

The two scenarios are provided below with results of student ratings over the past five years. What is surprising is the wide differences from year to year, with no particular trend in evidence. The term "practitioner" instead of "panel of experts," is used to simplify presentation.

The first scenario deals with misuse of the campus computer:

A university student used the campus computer time-sharing service as an authorized user. The director announced that students would receive public recognition if they successfully compromised the computer system from their terminals. Students were urged to report the weaknesses they found. This created an atmosphere of casual game playing and one-upmanship in attacking the system.

The student found a means of compromising the system and reported it to the director. However, nothing was done to correct the vulnerability and the student continued to use his advantage to obtain more computer time than he was otherwise allowed. He used this time to play games and continue his attacks to find more vulnerabilities (Parker, 1980, p. 20).

Table 1 shows the differing views of the experts and the students. The panel of experts clearly understands the behavior as misuse; students rate it very differently, following the campus code of ethics. The essence of the campus code is "beating the system is the name of the game."

When the results of this scenario are reviewed, student opposition concerning copying software begins to diminish. Their discrepancy with the panel of experts is a sobering experience for students.

The class is more cautious in evaluating the second scenario:

1 Because of space limitations, I have only presented the results on the decision related to the students' ethics. The scenario also calls for students to rate the director's behavior, first for encouraging compromise and second for not correcting the vulnerability.
Table 1. The First Scenario: Exploiting Vulnerabilities

<table>
<thead>
<tr>
<th>Participants</th>
<th>Unethical</th>
<th>Not Unethical</th>
<th>No Ethics Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Practitioners</td>
<td>75%</td>
<td>17.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>IS Students</td>
<td>1983: 36%</td>
<td>50%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>1984: 61%</td>
<td>26%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>1985: 67%</td>
<td>23%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>1986: 38%</td>
<td>54%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>1987: 67%</td>
<td>13%</td>
<td>20%</td>
</tr>
</tbody>
</table>

A programming manager received a directive to develop a set of programs that would circumvent the normal accounting controls in his employers' business. It was explained to him the purpose was only to test new business functions. He protested to his senior manager, but was told that the dangers of circumventing the controls had been assessed and a decision had been made to proceed as planned. The manager implemented the programs (Parker, 1980, p. 133).

Again, the class mean varied a great deal (See Table 2.) Only the 1984 and 1987 classes were similar to the panel of experts. Also, 29% and 33% from those classes, respectively, believed no ethics issue was involved, compared to 17% of the panel of experts.

Comparison of Cases to Codes of Ethics

The initial lecture and two cases are covered in the first class. The second class continues the discussion, after students have had an opportunity to reflect on the results for several days. Two general reactions occur. First, students realize that issues of this type do require more attention. It was shocking to them to realize how far they differed from the panel of experts — and from each other.

Second, students are more motivated to read the codes of ethics carefully to try to find whether the issues in the two scenarios are covered. One point in the code clearly relates to the first scenario. It states that: "I shall not exploit the weakness of a computer system for personal gain or personal satisfaction."

Also, after each scenario, the Parker book provides a statement of "general principles" that apply to the case. For example, after the first scenario, the general principle is "the existence of temptation does not justify irresponsible action. For example, absence of a lock does not justify theft. Reporting knowledge of a system weakness does not remove the ethical responsibility not to exploit the weakness" (pp. 20-21).

Students learn, by examining the code in depth, that it applies quite well to the situations being evaluated. For example, in the second scenario, students recognize that the 17% of the panel of experts who said no ethics issue was involved did not clearly examine the situation against the code or overlooked that part of the code. The DPMA code states: "in recognition of my obligation to my employer, I shall protect the proper interests of my employer at all times." Parker raises a general principle at the end of the sce-

Table 2. The Second Scenario: Developing Programs Without Adequate Controls

<table>
<thead>
<tr>
<th>Participants</th>
<th>Unethical</th>
<th>Not Unethical</th>
<th>No Ethics Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Practitioners</td>
<td>20%</td>
<td>63%</td>
<td>17%</td>
</tr>
<tr>
<td>IS Students</td>
<td>1984: 27%</td>
<td>44%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>1985: 41%</td>
<td>28%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>1986: 50%</td>
<td>27%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>1987: 20%</td>
<td>47%</td>
<td>33%</td>
</tr>
</tbody>
</table>
nario: "An individual responsible for business computer programs is also responsible to assure that there are adequate controls to protect the business against loss (p. 133).

Modifications to Pedagogy

Having found a pedagogy that motivates students, I have introduced only slight refinements. The weighting on the final exam now includes 5 percent for coverage of ethics content. That small weighting is sufficient to get students to perform another review of the material. Another reinforcement approach is to ask students to bring in newspaper clippings or to describe personal incidents involving ethical issues.

We also discuss ethics programs in companies. Students are given the *IBM Business Conduct Guidelines* (1983) and asked to contrast this very detailed listing versus the Hewlett-Packard "high-trust" approach, where there are few guidelines. Unfortunately, we are able to spend very little time on this additional material, small in proportion to the value gained by maintaining the emphasis on the subject throughout the semester.

Conclusion

The discussion above concentrates on one of the two aspects in teaching ethics, instructor emphasis on the importance of the subject. The second objective is to try to motivate students to incorporate the code of ethics into their behavior. The first step in this process is to motivate them to personalize the issues discussed in class. The pedagogical process discussed above is successful in causing students to think about how they personally would handle these issues. But does it change their behavior?

One positive piece of evidence is the reduction in cheating in the course. It never was a widespread problem — only a few persons were disposed to cheating. The discussion of the second scenario provides a natural entree to the subject of enforcement of the code of ethics. The DPMA code states: "In recognition of my obligation to my fellow members and the profession, I shall take appropriate action in regard to any illegal or unethical practices that come to my attention." Many students oppose an honor system because it requires them to "rat" on their colleagues. When they read that the code of ethics for their profession includes enforcement clauses, they began to revise their views on reporting "honor code" violations. Although there is no honor code system in my university, the code of ethics establishes an honor code environment for the course.

I tried to introduce an honor code in my classes a number of years ago. It was not successful; students continued to come by my office from time to time to complain about cheating. They asked me to change my practice of leaving the room during quizzes and exams because some students were cheating, taking unfair advantage of the honest students. I complied. Since introduction of the topics of ethics and the professional code of ethics for the IS field, I have resumed the practice of leaving the room during quizzes and exams. Students enforce the honor system. There has been only one incident of cheating reported to me in the past five years. I personally grade all quizzes and exams and rarely find evidence of cheating. Several students have discussed with me how cheating was observed in a class and how members of the class immediately reprimanded the individual. Thereafter, cheating was no longer a problem, according to students.

There is another aspect of the course that allows observation of honesty. The course has a large system project where students are encouraged to work together for the first half of the project but are asked to complete the latter half without assistance from others. It is very easy to determine if they colluded on the second part — it would be more difficult to disguise work done in common than to do the work alone. Reduction in collusion has occurred for the project as a result of the ethics addition to the curriculum.

Increasingly, managers in firms who hire our IS graduates have asked for on-site presentations on the subject of ethics in the IS profession. Most of this interest has been from our IS alumni who are employees of these firms.

Of course, the ultimate test on whether students have incorporated ethics into their behavior is how they act on the job. This is difficult for an academician to measure. I keep close contact with employers of my students and have not heard of any unethical practices. In other words, none have been caught!

"Once they graduate, will students miraculously become more ethical?" This was the question...
of Thomas Roberts, a consultant who frequently writes on the issue of illegal copying of software. He says his surveys of students reveal that they are "aware that they are ripping off intellectual property but don't much care. Their attitude can best be summed up by the phrase, 'Everyone else does it, so why shouldn't I?'' (Roberts, p. 48).

Students do not wait until graduation to begin to attain some skills in the tools and techniques taught in the IS curriculum. Nor should they wait to begin to apply their newfound knowledge about professional ethics.

Unfortunately, the IS literature is almost void of articles on the topic; my literature search reveals only two other publications (Couger, 1984; Johnson, 1984). The index for MIS Quarterly does not include a section on this topic. However, there are references from the general ethics literature that are useful to the IS academician. One is a recent book on business ethics by Robert Jackall (1988) entitled Moral Mazes: The World of Corporate Managers. Another is Essays on Ethics in Business and the Professions by Jack Behrman (1988). Also, there are two good publications related to pedagogy in business. The first is Ethics in the Education of Business Managers by Charles Powers and David Vogel (1980). The second is Ethics in the Business Curriculum by George Pamental (1980).

The approaches used in this project do not conform to a specific research paradigm. Since the ethics issue is expanding in importance for our profession, there may be others who would build on this research. For those researchers, I recommend development of a questionnaire for students to complete to enable statistical analysis of the quality of their learning in this subject area.

It is hoped that the above discussion will be of benefit to IS faculty who want to include the ethics topic in the curriculum but must economize among all the topics to cover for majors. It should also be useful to the IS trainer who is attempting to include more ethics instruction for the career development of IS practitioners.

References

About the Author
J. Daniel Couger is Distinguished Professor of Information Systems and Management Science at the University of Colorado, Colorado Springs. He has lectured in more than 50 countries on six continents. He is the author of 16 books and more than 100 papers. Prior to his academic appointment he was a manager in the computer field.
Appendix A

DR1.3.3. An ACM member shall not use any confidential information from any employer or client, past or present, without prior permission.

CANON 2
An ACM member should strive to increase his competence and the competence and prestige of the profession.

Ethical Considerations
EC2.1. An ACM member is encouraged to extend public knowledge, understanding, and appreciation of information processing, and to oppose any false or deceptive statements relating to information processing of which he is aware.

EC2.2. An ACM member shall not use his professional credentials to misrepresent his competence.

EC2.3. An ACM member shall undertake only those professional assignments and commitments for which he is qualified.

EC2.4. An ACM member shall strive to design and develop systems that adequately perform the intended functions and that satisfy his employer’s or client’s operational needs.

EC2.5. An ACM member should maintain and increase his competence through a program of continuing education encompassing the techniques, technical standards, and practices in his fields of professional activity.

EC2.6. An ACM member should provide opportunity and encouragement for professional development and advancement of both professionals and those aspiring to become professionals.

Disciplinary Rules
DR2.2.1. An ACM member shall not use his professional credentials to misrepresent his competence.

DR2.3.1. An ACM member shall not undertake professional assignments without adequate preparation in the circumstances.

DR2.3.2. An ACM member shall not undertake professional assignments for which he knows or should know he is not competent or cannot become adequately competent without acquiring the assistance of a professional who is competent to perform the assignment.

DR2.4.1. An ACM member shall not represent that a product of his work will perform its function adequately and will meet the receiver’s operational needs when he knows or should know that the product is deficient.

CANON 3
An ACM member shall accept responsibility for his work.

Ethical Considerations
EC3.1. An ACM member shall accept only those assignments for which there is reasonable expectancy of meeting requirements or specifications, and shall perform his assignments in a professional manner.

Disciplinary Rules
DR3.1.1. An ACM member shall not neglect any professional assignment which has been accepted.

DR3.1.2. An ACM member shall keep his employer or client properly informed of the progress of his assignments.

DR3.1.3. An ACM member shall not attempt to correct errors written in his name, or to limit his liability to clients for his personal malpractice.

DR3.1.4. An ACM member shall indicate to his employer or client that he cannot be expected if his professional judgement is overruled.

CANON 4
An ACM member shall act with professional responsibility.

Ethical Considerations
EC4.1. An ACM member shall not use his membership in ACM improperly for professional advantage or to misrepresent the authorship of his work.

EC4.2. An ACM member shall conduct professional activities on a high plane.

EC4.3. An ACM member is encouraged to uphold and improve the professional standards of the Association through participation in their formulation, establishment, and enforcement.

Disciplinary Rules
DR4.1.1. An ACM member shall not speak on behalf of the Association or any of its subgroups without proper authority.

DR4.1.2. An ACM member shall not knowingly misrepresent the policies and views of the Association to gain unfair advantage.

DR4.1.3. An ACM member shall preface partisan statements about information processing by indicating clearly on whose behalf they are made.

DR4.2.1. An ACM member shall not maliciously injure the professional reputation of any other person.

DR4.2.2. An ACM member shall not use the services of or his membership in the Association to gain unfair advantage.

DR4.2.3. An ACM member shall take care that credit for work is given to whom credit is properly due.

CANON 5
An ACM member should use his special knowledge and skills for the advancement of human welfare.

Ethical Considerations
EC5.1. An ACM member should consider the health, privacy, and general welfare of the public in the performance of his work.

EC5.2. An ACM member, whenever dealing with data concerning individuals, shall always consider the principle of the individual’s privacy and seek the following:

- To minimize the data collected.
- To limit unauthorized access to the data.
- To provide proper security for the data.
- To determine the required retention period of the data.
- To ensure proper disposal of the data.

Disciplinary Rules
DR5.2.1. An ACM member shall express his professional opinion to his employers or clients regarding any adverse consequences to the public which might result from work proposed to him.
Appendix B

DPMA Code of Ethics, Standards of Conduct and Enforcement Procedures

The following includes documents approved at the 1981 and 1982 Data Processing Management Association International Board of Directors meetings. The enforcement procedures take effect Jan. 1, 1983. DPMA has long been involved in the establishment of ethics and standards within the profession.

Code of Ethics

I acknowledge:

That I have an obligation to management, therefore, I shall promote the understanding of information processing methods and procedures to management using every resource at my command.

That I have an obligation to my fellow members, therefore, I shall uphold the high ideals of DPMA as outlined in its International Bylaws. Further, I shall cooperate with my fellow members and shall treat them with honesty and respect at all times.

That I have an obligation to society and will participate to the best of my ability in the dissemination of knowledge pertaining to the general development and understanding of information processing. Further, I shall not use knowledge of a confidential nature to further my personal interest, nor shall I violate the privacy and confidentiality of information entrusted to me or to which I may gain access.

That I have an obligation to my employer whose trust I hold, therefore, I shall endeavor to discharge this obligation to the best of my ability, to guard my employer's interests, and to advise him or her wisely and honestly.

That I have an obligation to my country, therefore, in my personal, business and social contacts, I shall uphold my nation and shall honor the chosen way of life of my fellow citizens.

I accept these obligations as a personal responsibility and as a member of this association. I shall actively discharge these obligations and I dedicate myself to that end.

Standards of Conduct

These standards expand on the Code of Ethics by providing specific statements of behavior in support of each element of the Code. They are not objectives to be strived for, they are rules that no true professional will violate. It is first of all expected that information processing professionals will abide by the appropriate laws of their country and community. The following standards address tenets that apply to the profession.

IN RECOGNITION OF MY OBLIGATION TO MANAGEMENT I SHALL:

- Keep my personal knowledge up-to-date and insure that proper expertise is available when needed.
- Accept full responsibility for work that I perform.
- Not mislead the authority entrusted to me.
- Not misrepresent or withhold information concerning the capabilities of equipment, software or systems.
- Not take advantage of the lack of knowledge or inexperience on the part of others.

IN RECOGNITION OF MY OBLIGATION TO MY FELLOW MEMBERS AND THE PROFESSION I SHALL:

- Be honest in all my professional relationships.
- Take appropriate action in regard to any illegal or unethical practices that come to my attention. However, I will bring charges against any person only when I have reasonable basis for believing in the truth of the allegations and without regard to personal interest.
- Endeavor to share my special knowledge.
- Cooperate with others in achieving understanding and in identifying problems.
- Not use or take credit for the work of others without specific acknowledgement and authorization.
- Not take advantage of the lack of knowledge or inexperience on the part of others for personal gain.

IN RECOGNITION OF MY OBLIGATION TO SOCIETY I SHALL:

- Protect the privacy and confidentiality of all information entrusted to me.
- Use my skill and knowledge to inform the public in all areas of my expertise.
- To the best of my ability, insure that the products of my work are used in a socially responsible way.
- Support, respect and abide by the appropriate local, state, provincial and federal laws.
- Never misrepresent or withhold information that is germane to a problem or situation of public concern nor will I allow any such known information to remain unchallenged.
- Not use knowledge of a confidential or personal nature in any unauthorized manner or to achieve personal gain.

IN RECOGNITION OF MY OBLIGATION TO MY EMPLOYER I SHALL:

- Make every effort to ensure that I have the most current knowledge and that the proper expertise is available when needed.
- Avoid conflict of interest and insure that my employer is aware of any potential conflicts.
- Present a fair, honest and objective viewpoint.
- Protect the proper interests of my employer at all times.
- Protect the privacy and confidentiality of all information entrusted to me.
- Not misrepresent or withhold information that is germane to the situation.
- Not attempt to use the resources of my employer for personal gain or for any purpose without proper approval.
- Not exploit the weakness of a computer system for personal gain or personal satisfaction.

Enforcement Procedures

1. Filing a Complaint

1.1 Any complaint against any Regular or Honorary Member of the Association shall be in writing, signed by the complainant, properly notarized and submitted by certified or registered mail to the Executive Director at International Headquarters. At a minimum, the complaint must include:

1.1.1 a concise statement of the facts on which the complaint is based;
1.1.2 citations to the section of the Code of Ethics and Standards of Conduct that were allegedly violated;
1.1.3 a statement that the facts are true to the best of the complainant’s knowledge and belief;
1.1.4 a statement that the complainant is willing to appear at the expense of DPMA at a hearing with the accused, if requested.

1.2 Charges may be initiated only by a Regular or Honorary member in good standing of the Association.

3 Courtesy of DPMA.