Employee Self-Service Technology and Performance: The Role of Learning Transfer and Involvement

Research-in-Progress

Rossella Cappetta
Bocconi University
SDA Bocconi School of Management
Milan (Italy)
rossella.cappetta@unibocconi.it

Likoebe M. Maruping
Georgia State University
J. Mack Robinson College of Business
Atlanta, GA (USA)
lmaruping@gsu.edu

Massimo Magni
Bocconi University
SDA Bocconi School of Management
Milan (Italy)
massimo.magni@unibocconi.it

Joshua E. Madden
Georgia State University
J. Mack Robinson College of Business
Atlanta, GA (USA)
jmadden4@student.gsu.edu

Abstract

Self-service technologies (SSTs) enable individuals to be independent and act at their own pace in their own time in consuming services that would ordinarily require delivery through a human resource. One emerging trend in SSTs is the implementation of such technologies to support individual training and learning, thus adapting to individuals' needs and pace. We leverage the DeLone and McLean IS Success Model to better understand how the characteristics of SSTs may facilitate individual learning transfer and enhance individual performance. We explore this phenomenon by conducting a multilevel field study involving 182 employees and 39 managers in 39 retail stores.

Keywords: Self-Service Technology, Learning, IS success, Multilevel

Introduction

Advances in information technology (IT) have transformed the manner in which individuals access and experience the services provided by organizations. In particular, the advances in IT in the last few decades (including the emergence of cloud technology, Software-as-a-Service, and mobile platforms) have enabled individuals to digitally access services without having to rely on direct interaction with a human resource, thus releasing them from the constraints of needing to be physically present at a particular location and time. These technologies are broadly referred to as self-service technologies (SSTs) in that they enable individuals to be independent and act at their own pace in their own time in consuming services that would ordinarily require delivery through a human resource (Bitner et al. 2002, Campbell and Frei 2010, Marler et al. 2009, Meuter et al. 2000). Organizations have been especially effective in realizing the benefits of leveraging SSTs in the consumer domain in areas such as online banking and online hotel self-checkout. One emerging trend is that organizations are shifting their focus toward leveraging SSTs for the
purpose of enabling their employees to access services that human resource functions would typically provide (Marler and Dulebohn 2005, Marler et al. 2009). For example, in an examination of Fortune 100 companies, Hansen and Deimler (2013) estimated that an investment in SSTs may boost productivity by 2% on annual basis for 5 years. Organizations are investing in the implementation of SSTs to train their employees, to familiarize sales representatives with new products, and to introduce new products to consumers. For example, GE Medical Systems implemented a SST system to train hospital operators to use their complex diagnostic equipment more effectively and efficiently (Bitner et al. 2002).

The implementation of SST systems for training is aimed at creating two advantages. First, firms are attempting to manage the costs associated with traditional training by offering self-service training based on new and emerging technologies. Second, they are trying to cope with environmental complexity by providing continuous training and development for their employees in order to work within increasingly flexible contexts (Bapna et al. 2013; Lee et al. 1995; Tamb and Hitt 2010) and to deal with the complexity of organizational products and processes. Anecdotal evidence seems to suggest that firms that are making investments in SSTs for their employees are realizing many of their targeted benefits. For example, the SST system at GE afforded employees the chance to train themselves at their own convenience, enabling them to choose the specific training content without necessarily being tied to specific schedules and locations. The implementation of the SST system enabled GE to develop well-trained employees who could use the equipment more effectively and efficiently, resulting in more uptime for the equipment, fewer needed repairs, and fewer costly in-person training sessions (Meuter et al. 2000).

Despite their promise, as suggested in the examples above, the literature says little about how SSTs enable employees to translate the content into actual work application. This is particularly important because the content of SSTs for training is necessarily broad since designers and content managers cannot design for all work contexts and contingencies. Yet, to some degree, the ability to realize performance gains from SSTs is derived from being able to apply the content to an employee’s specific work context. Consequently, theoretical understanding of the performance impacts of SSTs for employees and the role of management in facilitating the realization of such performance impacts is limited. Research suggests that firms often discover that implementing and managing a SST infrastructure effectively is more difficult than planned, in part because users are not able to grasp the benefits that were expected in terms of learning and performance improvements derived from their acquisition of new skills (Bitner et al. 2002). Previous research has in fact shown that there is a disconnect between the benefits an individual sees for themselves from SST usage as compared to the perceived benefits for the organization (Bitner et al. 2002). This suggests that there may be a role for managerial interventions in facilitating the alignment between individual and organizational benefits derived from SST implementation (Marler et al. 2009). In addition to the lack of understanding of the empirical impact of SSTs on employee performance, research in this domain has also tended to black-box the SST itself, paying little attention to the aspects of such systems that may promote employee performance. As such designers of employee-facing SSTs have little guidance about where to place the emphasis when designing such systems. This is consistent with previous research on similar technologies within the banking industry has shown the importance of fit with regards to the service in question (Hoehle 2012). Our in-depth analysis of employee involvement and the relationship of the service, in addition to the new questions presented pertaining to what degree SSTs will fit with the task of knowledge transfer in general, represents a way to support managers and designers in the introduction of SST.

In light of the theoretical limitations identified above, the contribution of this research is threefold. First, we open up the black-box of employee-facing SSTs by identifying system quality and information quality as key attributes that promote the value-adding effects of such systems for employees. Second, we adopt a learning transfer theoretical lens to identify the mechanism by which SSTs facilitate employee performance in organizational settings. Third, we examine complementarities between the deployment of SSTs and the role of management by explicitly identifying managerial interventions that can compensate for employees who have difficulty grasping the benefits of such systems.

In light of the aforementioned issues, we leverage the DeLone and McLean IS Success Model’s theoretical underpinnings, which identify system quality and information quality as important characteristics of systems that facilitate the realization of net benefits (DeLone and McLean 1993, 2003). We draw on these system characteristics to investigate how training oriented SSTs are able to support employee learning transfer and, in turn, how these impact performance. Our perspective is consistent with previous research in the context of learning, which has underscored that system quality and information quality—as they are
described in the DeLone and McLean IS Success Model (1993, 2003)—are important determinants of learning effectiveness (Hiltz 1993, Webster and Hackley 1997). Moreover, we consider the context of the work environment by taking into account the degree to which employees are involved by management in discussions and decisions that affect their jobs. Such managerial interventions can play an important role in either helping employees contextualize the content accessed in the SST for application in their jobs or substituting for this content so that reliance on system quality and information quality is less critical.

The objective of this research-in-progress is to begin to address the theoretical gaps identified above by developing and testing a cross-level model for understanding how system quality and information quality may affect individual learning transfer in the context of SSTs used for learning purposes where there are varying degrees to which managers involve employees in decisions that affect their work. We also examine how learning transfer through SSTs affects employee performance. We explore this phenomenon by conducting a field study involving 182 employees and 39 managers in 39 retail stores.

Theoretical Background

Self-Service Technology and learning transfer

As noted earlier, SSTs represent a broad range of technologies that enable users to access services on their own without need for interfacing with another person (Meuter et al. 2000). SSTs have received a significant amount of attention in the literature. Meuter et al. (2000) identified the elements of SSTs that relate to customer satisfaction and dissatisfaction. They found that convenience and time saving was the most frequently cited reason for satisfaction with SSTs. A lack of reliability and poor design were among the most highly cited reasons for customer dissatisfaction with SSTs. Schultze (2003) examined the use of SSTs as a complement to existing customer service structures to facilitate interactions between service organizations and their customers. Campbell and Frei (2010) examine adoption rates among “passive adopters” and “active adopters” of SSTs (specifically online banking) and find that it leads to higher retention rates over a three-year period (Campbell and Frei 2010). Other research suggests that as customers become more familiar with SSTs, the benefits of use may actually increase for both customers and organizations. For example, users of online services have received better service quality over a period time without the organization responsible for the service actually having to make a serious effort or changes to policy since the customers themselves have become more familiar with online service tools and are using them more effectively (Tate and Evermann 2010). Most recently, Sherer et al. (2015) found that SST deployment has an inverted U-shape relationship with customer defection such that an intermediate level of deployment is optimal and excessive use erodes customer retention over time. As this prior research indicates, there has been a significant focus on the impact of SSTs on customers. There has been comparatively much less research focus on the impact of SSTs on employees even as we are seeing an increasing organizational shift toward investment in employee SSTs.

Some of the prior research on SSTs for customers also talks about the implications such technologies might have for employees. For instance, Bitner et al. (2002) highlight concerns for employees with regards to customer use of SSTs, including worries about employees’ reluctance to change their service behavior and anxiety that they are being replaced by the new technologies. Additionally, Bitner et al. (2002) argue that both employees and customers miss direct interaction with each other. In one of the few empirical studies to examine employee SSTs, Marler et al. (2009) draw on the theory of planned behavior to identify factors that affect employees’ intention to use an SST. Importantly, they find that in addition to perceived usefulness influencing intention through its effect on attitude toward SST, management has an active role to play in facilitating intention to use at the post-implementation stage. Specifically, Marler et al. (2009) find that perceived organizational support and managerial pressure interact to influence subjective norm which in turn affects intention to use SST. An important take-away from this prior research is that, in the case of employee SSTs, the utility of the system matters and management has an active role to play. While this addresses many of the concerns employees may have when using a new SST, it does not necessarily address the benefits that organizations and employees may be expecting to receive from this use. There can be a disparity between what management expects to get out of the implementation of employee SST technology as compared to what the employees actually using it expect (Marler et al. 2009). It is clear that there is a limited understanding of these downstream outcomes of employee SSTs and this is where we focus our current research effort.
Our particular focus in this research is on learning transfer—the ability of someone to apply knowledge or skills acquired in training to one’s work (Baldwin and Ford 1988). Employee SSTs for training enable employees to access important content to improve their existing skills and to acquire new skills. We believe that two aspects of such systems become important. The first is the quality of the content itself. The ability to digest information that is stored digitally is affected, in part, by manner in which it is presented. Some content is more effectively communicated through multimedia such as audio and video and other content is more effectively presented via text and tables. The second is the quality of the system. In order to derive value from an employee SST, employees need to be able to reliably and effectively access the content. These two elements are explicitly represented in the DeLone and McLean IS success model (DeLone and McLean 1992, 2003). In the next section, we provide a brief overview of the model and proceed to formulate our hypotheses about employee SST for training.

In keeping with Locke and Golden-Biddle (1997), it seems that the largest problem presented within the current literature is that, simply put, the literature on SSTs is incomplete. There are apparently large gaps within the literature to be filled and this research is attempting to fill in one such gap by applying the DeLone-McLean IS Success model to a new context, in which this case is that of SST adoption.

IS Success Model

Information systems success research is perhaps most defined by its focus on evaluating the effective creation, distribution, and use of information via technology (Petter et al. 2012). In an attempt to bring together the multiple dimensions of success into one comprehensive framework, DeLone and McLean developed their own model of success within information systems, which has since become known as the “DeLone-McLean IS Success Model” (DeLone and McLean 1992, Petter et al. 2012, 2013). The original 1992 model organized success into six separate dimensions, although this was later adjusted (DeLone and McLean 1992, Petter et al. 2012). In a reflective work summarizing the development of the model, the original developers of the model, DeLone and McLean, as well as Petter state that “previous measures of success about accuracy, processing speed, and flexibility of a system were grouped together as measures of system quality,” which represented a new step within the development of this analysis (Petter et al. 2012). Overall, DeLone and McLean originally defined six unique dimensions of IS success: system quality, information quality, use, user satisfaction, individual impact, and organizational impact (DeLone and McLean 1992, Urbach and Miller 2012).

Motivated in part by the criticisms of Seddon (1997), (DeLone and McLean 2003) updated the IS Success Model to include “the addition of service quality to reflect the importance of service and support in successful e-commerce systems; the addition of intention to use to measure user attitude as an alternative measure of use; and the collapsing of individual impact and organizational impact into a more parsimonious net benefits construct. The updated model consists of six interrelated dimensions of IS success: information, system, and service quality, (intention to) use, user satisfaction, and net benefits” (Urbach and Miller 2012). Our conceptual model based on this information is shown below in Figure 1. Specifically, we focus on system quality, information quality, and net benefits in our model.
Hypotheses

System quality refers to the performance of the system in terms of design and consistency of the system from a technical standpoint. A system which has high quality is able to guarantee reliable functioning, without bugs and with an intuitive and easy to navigate interface. System quality has been considered by previous research to be a critical aspect that affects individual behavior and attitudes toward the system and which can determine the success of the system introduction (DeLone and McLean 1992, Petter et al. 2012). For example, previous research finds a positive effect of system quality in introducing ERP systems (Sedera et al. 2004). The importance of system quality is even more critical in the context of employee SSTs because employees are not directly supported by others’ intervention and therefore they strongly rely on the characteristics of the system in terms of quality. Previous research underscores that users’ rejection of SSTs is mostly related to cases of lack of quality of the system in the form of malfunctions (e.g., machines were broken, web sites were down, long response times) (Meuter et al. 2000). In this case the SST is designed for training purpose and a malfunction of the system interrupts the learning transfer process and the ability to understand how to translate the content of the training into employees’ work. Moreover, if the system is poorly designed in terms of usability and response time, employees may be more focused on understanding how to make the system work rather than focusing on the content delivered. Consequently, employees would be less likely to understand how to apply the content delivered to their work environment, thus hampering the learning transfer. Conversely, individuals who perceive the system as well designed, reliable and easy to interact with, they would be more likely to focus their cognitive efforts on the contents of the training, without having interruptions due to the poorly designed system. This enables them to better understand how to apply the content to their daily tasks.

H1: System quality will be positively associated with learning transfer.

Information quality refers to the amount, relevance, timeliness and accuracy of the information generated and provided by the system. The quality of the information plays a pivotal role in the success of the system, and this is particularly critical in the SSTs because individuals are not in a situation where they can rely on others to complement information that is misleading, unclear, incomplete, or does not arrive in a proper time frame. For example, Delone and McLean (2003) pointed out that information quality in the context of web commerce is fundamental for stimulating prospective buyers or suppliers to initiate and then repeat transactions through the system. A core value proposition of SSTs designed for training lies in the information they are able to transmit to employees in order to enrich their knowledge. In sales contexts where employees want to learn how to manage the sales encounter with the customer, for example, information such as product diagnostics is better presented graphically through pictures and illustrations as well as tables and text. Other information, such as how to close a sale or how to inquire about a customer’s price sensitivity may be better understood in audio and video format where visual and audio cues are important. Therefore, the quality of the information is an important element in determining how well employees might be able to apply what they learn from the SST to their own work.

H2: Information quality will be positively associated with learning transfer.

Employee involvement is considered a managerial practice whereby managers encourage employees to participate in discussions and decision making processes that affect how work gets done and by providing employees with discretion in dealing with different situations (Haynes et al. 1999). Employee involvement has been shown to increase employee service performance and customer satisfaction, by sharing information on customer behaviors and how to deal with particular situations (Liao and Chuang 2004).

The implications of employee involvement relative to system quality and information quality are not quite straightforward. On one hand, employee involvement can act as a complement to system quality and information quality. By being involved in store-related decisions and having discretion in their work, employees are in a better position to contextualize the information that is contained in the system to their specific work style. It can also put employees in a position to understand management’s intentions behind implementing the system. The combination of high information quality and employee involvement increases the likelihood that employees can internalize and apply the content in the SST. Similarly, through better contextualization, high system quality (e.g., through improved accessibility on various hardware platforms), coupled with employee involvement can improve employees’ ability to apply SST content to their work. This facilitates better learning transfer. On the other hand, SSTs for training...
represent a way to transfer information and codified knowledge and is often more general in nature. Indeed, SSTs for training are designed to provide self-service training to a wide range of trainees and may not consider the wide spectrum of specific situations that employees might encounter (Bitner et al. 2002). Thus, even though SST information quality and system quality might be high, an inability to apply the content to the idiosyncratic aspects of one’s work may limit the benefit realized from using such systems. For this reason, the role of the manager in involving the employees could represent a way to provide information and share knowledge that may be more effectively applied to the variety of the settings employees have to deal with, thus substituting the benefits provided by the SST and attenuating the role of system quality and information quality in affecting learning transfer. In light of this reasoning, we argue that managerial efforts to involve store employees may substitute and overcome the information provided by the system. Indeed, much of the training content may not be context-specific making it difficult for employees to probe further as to how various concepts apply to their specific job situation at their specific work location. Our argument relies on the fact that learning is a complex process, and the manager plays a pivotal role in translating simple information into actionable behaviors, thus making the role of the SSTs less prominent. In contrast, employees may be entirely reliant on SST system quality and information quality when they are not privy to the contextual information possessed by their manager.

Subsequently, we present the following hypotheses:

\(H_{3a} \): Employee involvement will have a cross-level moderation effect on the relationship between system quality and learning transfer, such that an increase in involvement will decrease the impact of system quality on learning transfer.

\(H_{3b} \): Employee involvement will have a cross-level moderation effect on the relationship between information quality and learning transfer, such that an increase in involvement will decrease the impact of information quality on learning transfer.

We expect learning transfer to positively affect employee job performance. As previous research shows, being able to apply the knowledge or skill acquired from training to the work environment enables them to do their work in more efficient ways or apply skills that enhance attainment of work objectives, thus enhancing individual performance (Ford et al. 1998). Indeed, individuals who are able to transfer the content of their training to the work environment are more likely to identify gaps in their task execution and adjust their behavior in order to improve their performance.

\(H_{4} \): Learning transfer will be positively associated with employee job performance

Method

Study Setting

We conducted a field study of an employee self-service training system in a large Italian firm that is a leader in the sale of top quality casual apparel for men, women, and children. The firm operates retail stores across Italy. Each retail store is led by one store manager who is in charge of coordinating the sales employees and ensuring that the turnover targets and margins established by headquarters are achieved. The firm’s headquarters broadly defines the sales strategies and provides guidelines for managing the sales process, but it grants store managers autonomy to manage the day-to-day activities, such as working with individual employees to set sales goals, assigning employees to work shifts, providing feedback, etc.

The firm had implemented an employee self-service training system that could be accessed by employees across all retail stores. Implementation of the system was intended to provide greater flexibility to employees in terms of accessing training. With the system in place, employees could digitally access training at their own convenience and choose training modules related to specific aspects of the sales process including training about retail stores (e.g., store concept, uniform, cleaning and set up), products (e.g., materials, patents, product diagnostics), and the sales process (e.g., making the first impression, relating to the customer, closing the sale). The system included a variety of interactive tutorials with video demonstrations, tests, progress score cards and feedback reports for different products and aspects of the sales process.
We solicited participation from 58 store managers and 262 sales employees of 58 different retail stores in Italy. We received usable responses from 39 store managers (67% response rate) and 182 sales employees (69% response rate). Among store managers, the average age was 35.25 (s.d. = 6.99), average organizational tenure was 4.45 (s.d. = 3.27) and 68% were women. For sales employees the average age was 30.15 (s.d. = 7.39), average organizational tenure was 2.77 (s.d. = 2.18) and 79% were women.

Table 1 includes a summary of the specific measurement scales we used for the various constructs in the model, the respondents involved, and the reliabilities. We also conducted a factor analysis to assess the convergent and discriminant validity of the constructs. All items had high loadings on their expected constructs and low cross-loadings on other constructs, providing support for convergent validity. Discriminant validity is also supported as the square root of the average variance extracted for each construct was larger than the correlations between the focal construct and other constructs.

Table 1. Construct Scales, Respondents, and Reliabilities.

<table>
<thead>
<tr>
<th>Construct (α)</th>
<th>Source</th>
<th>Respondent</th>
</tr>
</thead>
<tbody>
<tr>
<td>System quality (α = .90)</td>
<td>A four-item scale by Wang et al. (2007) that includes items such as “the e-learning platform has an appealing interface”</td>
<td>Employee</td>
</tr>
<tr>
<td>Information quality (α = .88)</td>
<td>A five-item scale by Wang et al. (2007) that includes items such as “the e-learning platform provides relevant information to improve one’s skills”</td>
<td>Employee</td>
</tr>
<tr>
<td>Learning transfer (α = .90)</td>
<td>A four-item scale by Xiao (1995) that includes items such as “I do my job with fewer errors thanks to this course”</td>
<td>Employee</td>
</tr>
<tr>
<td>Employee involvement (α = .90)</td>
<td>A five-item scale by Liao and Chuang (2004) that includes items such as “I ask my employees' opinion when I have to make a decision that impacts their job”</td>
<td>Manager</td>
</tr>
<tr>
<td>Performance</td>
<td>Performance was rated by store managers using a proprietary scale that was uniformly used across all retail locations. These ratings were used for promotions and other decisions.</td>
<td>Manager</td>
</tr>
</tbody>
</table>

Results

Due to the multilevel nature of the research model as well as the fact that our data involved multiple sales employees who were nested within retail stores, we used random coefficient modeling (RCM) to conduct the preliminary analysis. RCM is well-suited for analyzing hierarchically nested data such as that involved in our study because it is robust to violations of the independence assumption in the distribution of observations and it partitions the variance in the dependent variable into components at different levels of analysis (Snijders and Bosker 1999). We conducted the analysis using the linear and non-linear mixed effects (nlme) package in R (Pinheiro and Bates 2000). Preliminary analysis of the variance components indicates that 32% of the variance in sales employee performance is between retail stores. The results of the analysis are shown in Table 2.
As the results in Table 2 show, system quality (γ = .21, p < .01) and information quality (γ = .17, p < .05) are positively associated with learning transfer, providing support for H1 and H2 respectively. Employee involvement (γ = .12, p < .05) has a positive cross-level association with knowledge transfer. The cross-level interaction between system quality and employee involvement is non-significant (γ = .12, p > .10). Therefore, H3a is not supported. The cross-level interaction between information quality and employee involvement is significant (γ = .19, p < .01) and appears to suggest a substitutive relationship such that the importance of information quality decreases as manager involvement of employees increases. This supports H3b. Finally, the results show that learning transfer is positively associated with employee performance (γ = .33, p < .001), providing support for H4.

Discussion

The preliminary results from this research-in-progress present a nuanced view of the impact of employee SST on downstream outcomes. First, the results show that system quality and information quality help improve job performance by enabling employees to digest the knowledge and skills contained within the employee SST and apply it to their work. As such, system quality and information quality emerge as important enablers in this context. Second, we see that the role of system quality in enhancing learning transfer is unaffected by the level of employee involvement. This suggests that system quality and employee involvement affect learning transfer independently of one another. In contrast, it appears that there is a substitutive relationship between information quality and employee involvement in affecting learning transfer. An implication of this is that—assuming it provides sufficient information quality—employee SST for training can be useful tool for self-enhancement for employees who work in an environment that does not support their involvement in key decisions. This is useful because it leaves employees less susceptible to the whims of specific managers’ approach to managing their employees and enables them to focus on enhancing their own performance.

These preliminary findings contribute to the literature in several important ways. First, this research shifts the research focus on SSTs from the customer-facing emphasis that dominates this domain to employee-facing which has received far less attention. Much of the literature in the SST domain has focused primarily on customers rather than employees and the few studies that have focused on employees have emphasized adoption rather than downstream impacts. As we noted earlier, this limited our understanding of how organizations benefit from the deployment of SSTs among their employees. We contribute to the literature by opening up the black-box to identify system quality and information quality as two key characteristics that enable performance gains from SSTs. Our findings contribute to the SST literature by empirically demonstrating the influence of employee SSTs on employee job performance. Second, our focus on employee SSTs for training shows that learning transfer is a key mechanism by which system quality and information quality provide performance benefits to employees. Because prior research has tended to black-box the SST under study, identifying the precise mechanisms through which the SST affects outcomes remained elusive. In this research, we reasoned that system quality and

Table 2. Results of Random Coefficient Models Predicting Learning Transfer and Performance

<table>
<thead>
<tr>
<th>Level-2 predictors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee involvement</td>
<td>.12* (.05)</td>
<td>.13* (.05)</td>
<td>.06 (.08)</td>
</tr>
<tr>
<td>Cross-level interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System quality x employee involvement</td>
<td>-12 (.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information quality x employee involvement</td>
<td>-.19* (.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>363.24</td>
<td>360.22</td>
<td>348.56</td>
</tr>
<tr>
<td>BIC</td>
<td>414.24</td>
<td>398.73</td>
<td>396.46</td>
</tr>
<tr>
<td>LogLikelihood</td>
<td>-165.62</td>
<td>-168.11</td>
<td>-159.28</td>
</tr>
</tbody>
</table>

Notes: level-1 n = 182 employees, level-2 n = 39 stores; * p < .05, ** p < .01, *** p < .001; standard errors are in parentheses; gender (0 = men, 1 = women); store type (1 = flagship, 2 = image maker, 3 = business, 4 = basic).
information quality should affect employee performance by affecting their ability to apply the job-related content of the SST. As such, knowledge transfer served as a relevant mechanism for connecting SST characteristics to performance impacts. Finally, our findings contribute to research on IS success by highlighting the substitutive role of employee involvement. Although prior research has acknowledged the need for considering organizational context in affecting the role of system quality and information quality, there continues to be limited theorizing of the relationships among these important factors. Our research takes an important first step in this direction by highlighting the substitutive relationship between employee involvement and information quality.

Although this research-in-progress makes an important contribution to the literature, it is only a starting point. Our findings seem to suggest that there may be some differences between individual employees in the extent to which they realize benefits from the SST. As this research progresses, we plan to examine these impacts across employees with different contractual relationships with the organization. It is possible, for instance, that temporary employees may be affected more strongly by SSTs than permanent employees who may have longer term options to learn by doing as opposed to relying on the SST. Further research will be needed to unpack the features of the SST that facilitate learning transfer. For example, additional insight could potentially be gained by decomposing information quality into the format in which such information is presented (e.g., multimedia, interactivity, etc.).

References

