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Abstract—Compared with other natural or man-made net-
works, electric power grid assumes distinct “electric” topology
with special small-world properties and electrical parameter
settings. In this paper we study the scaling property of power grid
in terms of both topology measures and electric parameters, with
a number of realistic power grid test cases of different size. The
examined measures and parameters include average node degree,
average path length, algebraic connectivity, the bus type entropy
that characterize relative locations of generation and load buses,
generation capacity, total demand, and transmission capacity.
Interpreting and testing the scaling property of power grid will
help us better understand the intrinsic characteristics of electric
energy delivery network of this critical infrastructure; and enable
the development of an appropriate synthetic modeling that could
be utilized to generate power grid test cases with accurate grid
topology and electric parameters.

Index Terms—Electric Power System Modeling, Scaling Prop-
erty, Random Topology Grid.

I. INTRODUCTION

For many countries their electric power system is one of
the most critical infrastructures whose reliable and efficient
operation is necessary for the essential functioning of their
society [1]. In order to develop, test, and validate new tools,
techniques, and algorithms for grid enhancement power re-
searchers need a large volume of realistic grid data. However,
only very few and limited test cases and real-world power grid
datasets such as [2] and [3] are publicly and freely available,
due to various security concerns.

In order to address the urgent need of grid data for testing
new approaches and designs, many synthetic models have
been developed in the past, such as a tree-topology power
grid model in references [4] and [5] to study power grid ro-
bustness and cascading failure blackouts, and a ring-structured
power grid model developed in [6] to examine disturbance
propagation. A small-world graph model for power grids was
first introduced by Watts and Strogatz in [7]. A random-
walk grid model with Poisson or Uniform bus locations was
proposed in [8]. Reference [9] also used a small-world graph
model to study the spreading mechanism of chain failures in a
large-scale grid. All these models provide useful perspectives
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of power grid characteristics but fail to accurately or fully
represent a realistic power system, especially its distinct sparse
connectivity and scaling property versus the grid size. Besides,
power grid networks are much more than a graph topology.
In order to facilitate numerical simulations for grid controls
and operations, one also needs to include realistic electrical
parameter settings such as line impedances, generation and
load settings, and transmission capacities. Our previous work
[10] proposed a random-topology power grid model, called
RT-nestedSmallWorld, which could be used to produce any
needed number of power grid test cases with scalable network
size featuring the same kind of small-world “electric” topology
of real-world power transmission network. References [11]
and [12] represent the first works that incorporate spatial
information into synthetic power grid modeling. Reference
[13] provides a survey of recent scientific studies that uses
complex network analysis to examine the properties of power
grid infrastructures .

This paper expands our past work on random topology grid
modeling with a study on the scaling property of power grid
in terms of both topology measures and electric parameters,
with all the available realistic power grid test cases of different
sizes. The examined measures and parameters include average
node degree, average path length, algebraic connectivity, the
bus type entropy that characterize relative locations of genera-
tion and load buses, generation capacity, total demand, and
transmission capacities. Interpreting and testing the scaling
property of power grids will help us better understand the
intrinsic characteristics of this critical infrastructure of elec-
tric energy delivery system; and enable the development of
an appropriate synthetic modeling that could be utilized to
generate power grid test cases of scalable network size and
with accurate grid topology and electric parameters.

A numerical measure called “Bus Type Entropy” in [14]
is re-examined and revised in this paper to characterize the
correlated assignment of generation, load, and connection
buses in a power grid, based on the IEEE test cases and some
newly obtained realistic grid data such as the ERCOT, WECC,
and PEGASE systems. The revised the entropy definition has
better statistical property and improved numerical stability. We
can then derive an approximate scaling function of bus type
assignment versus network size.

The rest of the paper is organized as follows. Section
II introduce the system model and some related definitions.
Section III examines some special scaling property of the
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connecting topology of a power grid in terms of average
connectivity, average path length in hops, and algebraic con-
nectivity. Section IV provides a revised definition of bus
type entropy that characterized the correlated assignments of
generation, load, and connection buses; and then derive an
approximate scaling function of the bus type entropy versus
network size. Section V presents some results on the statistics
of generation capacity, load settings, and transmission capacity
and their corresponding scaling property. Finally Section VI
concludes the paper.

II. SYSTEM MODEL

In order to describe the connecting topology of an undi-
rected graph network with with n vertices (nodes) and m edges
(branches) a Laplacian matrix can be used:

L = ATA, (1)

where A := (Al,k)m×n is the branch-node incidence matrix,
arbitrarily oriented and defined as: Al,i = 1; Al,j = −1, if the
lth branch is from node i to node j and Al,k = 0, k ̸= i, j.

On the other hand, to describe the power-transmission
topology of a grid which is more than a graph network, one
shall utilize an admittance matrix Yn×n defined as:

Y = ATΛ−1(zl)A, (2)

where Λ−1(·) denotes the diagonal inverse matrix with a
specified vector and zl the vector of branch impedances in a
grid. Comparing equations (2) with (1), one may find that the
admittance matrix of a power grid can be viewed as a complex
weighted Laplacian. Obviously, the definition of (2) neglects
the shunts in a grid and can be corrected by only revising
its diagonal entries. However, ignoring the shunts may not
cause big errors in some grid analysis, especially those only
involving real power transmission such as the DC power flow
approximation [1], which is a widely used standard approach
in optimizing flow dispatch and for assessing line overloads .

The flow distribution in a power grid follows Kirchhoff’s
voltage and current law and Ohm’s law. Therefore the grid
network constraints can be derived as follows:

P (t) = B′(t)θ(t),
F (t) = Λ (yl)Aθ(t),

(3)

where
P (t) = [PG(t),−PL(t), PC ]

T (4)

represents the vector of net injected real power from genera-
tion, load and connection buses. Obviously the power injection
from a connection bus equals zero, i.e., PC = 0. Note that with
the definition of injected power (4), we assume that buses
in a grid have been reordered so that the generation, load,
and connection buses could be grouped as listed. Clearly the
location of generators and loads plays a vital role in grid
operation. θ(t) is the vector of phase angles, and F (t) the
vector of real-power delivered along the branches. The matrix
B′(t) is defined as

B′(t) = ATΛ (yl)A, (5)

where yl = 1/xl with xl the branch series reactance and
Λ (yl) represents a diagonal matrix with entries of {yl, l =
1, 2, · · · ,m}. Alternatively we can have B′ = −Img(Y )
where the shunts of the grid neglected in the admittance
matrix.

Besides the network constraints, grid operation also needs
to account for the constraints of generation capacity, load
settings, and transmission capacity, such as

Pmin
G ≤ PG ≤ Pmax

G , (6)
Pmin
L ≤ PL ≤ Pmax

L , (7)
−Fmax ≤ F ≤ Fmax. (8)

In the following sections of the paper, we will examine
the scaling property of power grid in terms of both topology
measures and electric parameters, with some available realistic
power grid test cases of different network size.

III. THE SCALING PROPERTY OF GRID CONNECTING
TOPOLOGY

As mentioned in Section II, the connecting topology of a
power grid can be fully described by its admittance matrix
which contains both graph topology and electric parameters.
Compared with the topology of other natural or man-made
networks, power grid topology is very different in many ways
[7]-[17], such as the salient small-world properties character-
ized by shorter average path length and higher clustering coef-
ficients than those of an Erdös-Rényi random graphs [18] with
the same network size and total number of links. The average
node degree of a typical power grid does not scale with the
network size but remains within a very strict range. Besides,
the node degrees approximates a statistical distribution of a
truncated geometric random variable with some mixture of
an irregular discrete. The algebraic connectivity of a grid also
exhibits some special scaling property [10]. Another important
property of power grid is its heavy-tailed distribution of line
impedances, which is well-fitted by a clipped double-Pareto-
logNormal (dPlN) distribution [19].

The node degree of bus i in a grid equals the total number of
branches it connects and can be obtained from the ith diagonal
entry of the Laplacian matrix, i.e., ki = L(i, i). Then the
average nodal degree of the grid is

⟨k⟩ = 1

n

n∑
i=1

L(i, i). (9)

Given the connecting topology of a grid, we can run the Dijk-
stra’s algorithm to calculate the shortest path length measured
in hops between any two buses i and j, i.e., lij . Then the
average shortest path length of a grid is

⟨l⟩ =
2
∑

i,j lij

n(n− 1)
. (10)

Another important topology measure is the second smallest
eigenvalue of the Laplacian matrix, λ2(L), called the algebraic
connectivity, with

[λ1, λ2, · · · , λn] = Eigen(L). (11)
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As a fact the smallest eigenvalue of the Laplacian is always
zero, i.e., λ1(L) ≡ 0 and the number of times that 0 appears
as an eigenvalue in the Laplacian is the total number of
islanded components in the network. λ2(L) reflects the overall
connectivity of a network and how fast information data can
be broadcast across it. The eigenvalue λ2(L) is greater than 0
if and only if network is a connected graph. If the algebraic
connectivity λ2(L) is close to zero, the network is close to
being disconnected. Otherwise, if λ2(L)/n gets close to 1,
where n is the network size, the grid tends to be a fully
connected topology.

Table I presents some topology measures evaluated on the
IEEE test cases and other real-world grids of different network
size, where the PEGASE systems represent some European
nation’s grid at different levels of network reduction, the
NYSIO system partially represents the New York interconnect
in the US, and the RTE system is an equivalent of the French
Grid. Fig. 1 shows the average node degree (9) of each grid
system versus its network size. Obviously the average node
degree of most sample grids does not scale but staying within
a very stable region as ⟨k⟩ ∈ [2.0, 3.5]. Two exceptions are
the PEGASE 89-bus system with ⟨k⟩ = 4.72 and the NYISO
2935-bus system with ⟨k⟩ = 4.47, which are unusually higher
than the average node degree observed in the rest grid systems.
This may be caused by the original grid’s denser connecting
topology or by the equalization approaches used in the network
reduction.

Fig. 2 depicts the average path length in hops, as defined in
(10), versus the network size for each sample grid in Table I,
where the dashed line represents an approximate fitting curve
of the observed scaling property as ⟨l⟩ ∝ 6.205 log n. Note
that for the purpose of simplicity, the logarithm in this section
is with base 10.

Fig. 3 plots the algebraic connectivity, as defined in (11),
scaling curve of power grid versus network size. We can
compares it with that of 1-Dimensional and 2-Dimensional
lattices where 1D-lattice is a ring structured topology, with
nodes connected with most adjacent neighbors on both sides.
2D-lattice is a regular two-dimension meshed grid with each

TABLE I. TOPOLOGY MEASURES OF REAL-WORLD POWER GRIDS

(n, m) ⟨k⟩ ⟨l⟩ λ2

IEEE-24 (24,38) 3.17 3.21 0.2132

IEEE-30 (30,41) 2.73 3.31 0.2121

NE-39 (39,46) 2.36 4.75 0.0762

IEEE-57 (57,80) 2.81 4.95 0.0882

PEGASE-89 (89,210) 4.72 3.87 0.1537

IEEE-118 (118,186) 3.15 6.31 2.71e-2

IEEE-300 (300,409) 2.73 9.94 9.38e-3

PEGASE-1354 (1354,1991) 2.90 11.20 6.59e-3

PEGASE-2869 (2869,4582) 3.19 20.00 6.23e-4

NYISO-2935 (2935,6567) 4.47 16.43 1.42e-3

RTE-6515 (6515,9037) 2.77 14.95 1.93e-3

Figure 1. Average Node Degree versus the Network Size

Figure 2. Average Path Length versus the Network Size

Figure 3. Algebraic Connectivity versus the Network Size

boundary side merging with the other side and each node
connected to the most adjacent neighbors around it. For 1-
D lattice, its connectivity scales as λ2(L) ∝ n−2; for 2-D
lattice , its connectivity grows as λ2(L) ∝ n−1; interestingly,
for power grids, its connectivity grows as λ2(L) ∝ n−1.041,
lying between those of 1-D lattice and 2-D lattice.

Fig. 4 presents a scatter plot of the algebraic connectivity
and the average path length of tested power grids, which
exhibits strong correlation between the two measures. In fact
there exists an approximate fitting function as log(λ2) ∝
−0.1678⟨l⟩.

IV. THE SCALING PROPERTY OF BUS TYPE ASSIGNMENT

Now we examine the problem of how to site the three
different types of buses (G/L/C) in a given grid topology. In
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Figure 4. Algebraic Connectivity versus Average Path Length

a typical power grid we may find 20-40% of (G)eneration
buses, 40-60% of (L)oad buses, and 10-20% of (C)onnection
buses. It is noted that a small portion of buses in a grid may
have both generation and load. For the purpose of bus type
assignment study in this paper, we assume that the bus types
of these buses will be decided based on the net injection power
from the generation and load, P = PG − PL, under normal
operation conditions. That is, a bus with positive net injection
power is considered as a generation bus; a bus with negative
net injection a load bus.

The topological location of generation, load, and connection
buses in a grid can be fully described by an integer vector
called bus type vector as defined later in this section. From
[20] we know that a realict grid has correlated bus type
assignment and non-trivial correlation exists between the bus
types (G/L/C) and other topology metrics such as the node de-
gree distribution and the clustering coefficient. What is more,
numerical simulations show that randomizing the original bus
type assignment in a realistic grid will cause the grid to behave
differently and lead to misleading results.

In order to study the scaling property of (G/L/C) bus
locations in a grid versue network size, we exploit a scalar
measure called the Bus Type Entropy firsted introduced in [14].
The measure is defined with three variations and utilized to
characterize the correlation of realistic bus type assignments.
In this paper the entropy measures in [14] have been re-
examined and revised so that an approximate scaling function
of the correlated bus type assignment in realistic grids versus
the network size can be appropriately derived, based on the
IEEE test cases and some realistic grid data, such as the
NYISO, the ERCOT, the WECC and the PEGASE systems.

A. Bus Type Entropy W (T)
We define the topological locations of generation, load, and

connection buses in a n-bus, m-branch power transmission
grid using a bus type vector T = [Ti]n×1 with:

Ti =

 1, if bus i is a (G)eneration bus,
2, if bus i is a (L)oad bus,
3, if bus i is a (C)onnection bus,

(12)

where i = 1, 2, · · · , n. If the grid is taken as an undirected
graph, each transmission branch will assume one of the
following six link types, i.e. {GG,GL,GC,LL,LC,CC},

fully determined by the bus types of the terminal buses in
a given the grid topology. Therefore the link type vector of a
grid can be defined as a function of T with:

Lj ∈ {1, 2, 3, 4, 5, 6}, j = 1, 2, · · · ,m, (13)

where the link type value of line j is numbered according to
the same order in above set.

Reference [14] proposed a scalar measure called Bus Type
Entropy with three variations, denoted as W1−3(T), based
on the bus type vector and the link type vector defined as
above. With this measure we expect to distinguish a correlated
bus type assignments {T∗}, extracted from realistic grids,
from the other randomized ones generated from permutation
T̃ = P(T∗). By the central limit theorem, the randomized
entropy values may assume a normal (Gaussian) distribution.
With the extracted distribution parameters (µ, σ), an normal-
ized distance can be defined to measure the difference between
T∗ and T̃ as:

dW (T∗, T̃) =
W (T∗)− µ

σ
(14)

Obviously an accurate evaluation of the distance depends on
how accurately the distribution parameters will be estimated
from an empirical probability density function (PDF) of W (T̃)
based on an appropriate entropy definition.

Our initial experiments on some synthetic and realistic grid
systems in [14] detected a clearly shifting pattern of (14)
versus the grid network size. Therefore in this paper, with
more available grid data, we wish to study and derive an
approximate scaling function of dW (T∗, T̃) versus the network
size n.

Using IEEE test cases of 30-300 buses and additional
realistic grid data such as the NYISO, the ERCOT, and the
WECC systems, we reexamine the entropy definitions in [14]
and found that they are not very suitable for the desired study
here because sometimes they may introduce segmented PDF
curves, making difficult an accurate estimation of distribution
parameters. Besides, the resulting entropy value seems to lack
numerical stability, which is not ideal for the design of a
searching algorithm we wish to develop later. Therefore in
this paper we revise the definition of the bus type entropy as:

W (T) = −
Σn

i=1 log(rTi)

n
−

Σm
j=1 log(RLj )

m
, (15)

where rTi = nTi/n represent the bus type ratio of bus i and
RLj = mLj/m the corresponding link type ratio of the jth
line; and nk and mk representing the total number of buses
and lines of different types in the grid that have some specified
types respectively. Equivalently, the bus type entropy of (15)
can also be written as:

W (T) = −Σ3
k=1rk log(rk)− Σ6

k=1Rk log(Rk). (16)

The revised entropy measure (16) is more like a typical
“entropy” definition. The following examination verifies that
entropy values calculated based on this definition will remain
within a narrower range implying better numerical stability.
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Another advantage of this entropy definition is that all the
empirical PDF derived for randomized bus type assignments
will approximate a normal distribution and have not segmented
patterns.

B. Deriving a Scaling Function of dW (n)

Using the new definition of bus type entropy proposed in
last subsection, we do the empirical probability analysis on the
IEEE test cases and realistic grid data. Table II presents the
evaluation results such as the fitting parameters (µ, σ) of the
normal distribution of randomized bus type assignments, and
the relative distance dW (T∗, T̃), from which one may easily
notice a shifting pattern of dW versus the network size.

Fig.5 presents a sample empirical PDF evaluated for the NY-
ISO 2935-bus system, with a sampling size of kmax = 25, 000,
in which the empirical PDF are depicted as bar plots and the
fitting Normal distribution plotted as thicker blue line. The
empirical probability distribution function (PDF) of a random
variable W can be generated through the normalized histogram
analysis of W (T̃ ) as

fW (x) =
Σkmax

k=1 δ∆(Wk − x)

kmax
, (17)

where δ∆(·) is a Dirac Delta function with a width of ∆:

δ∆(x) =

{
1
∆ , |x| ≤ ∆

2
0, otherewise.

(18)

Fig.5 implies that the “correlated” bus type assignment in a
large realistic power grid such as the NYISO 2935-bus system
stands out from those randomized bus type assignments,
although implemented on the same connecting topology, with
the help of an appropriately defined entropy measure (15).
More discussion on the ability of the proposed entropy mea-
sure to characterize correlated bus type assignments in realistic
grids can be found in [14] and [21].

With above results we apply a curving fitting method to
dW (T∗, T̃) and derive an approximate scaling function as:

dW (n) =

{−1.39 lnn+ 6.79, lnn ≤ 8

−1.25× 10−13(lnn)15.1 + 0.43, lnn > 8
,

(19)

TABLE II. THE NORMAL FITTING PARAMETERS OF THE EMPIRICAL

PDF OF W (T̃) AND THE RELATIVE DISTANCE OF dW

(µ, σ) W (T∗) dW (T∗, T̃)
IEEE-30 (2.38, 9.0e-2) 2.49 1.22

IEEE-57 (2.31, 5.8e-2) 2.44 2.24

IEEE-118 (2.34, 4.5e-2) 2.35 0.22

IEEE-300 (2.57, 2.6e-2) 2.53 -1.53

NYISO-2935 (2.75, 7.3e-3) 2.70 -5.71

ERCOT-5633 (2.36, 8.1e-3) 2.23 -16.25

WECC-16994 (2.72, 3.4e-3) 2.33 -114.70

2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79
0

10

20

30

40

50

60

µ =2.7512

σ = 7.323e−3

W
*
=2.7090

(a)

Figure 5. The Empirical PDF and the Normal Distribution Fitting for the
Bus Type Entropy W (T̃) by Randomizing the Bus type Assignments in the
NYISO 2935-bus System: the realistic-grid bus type entropy W ∗ is marked
by a red ‘star’.

Figure 6. The fitting curve of the scaling function of the relative distance
dw versus the network size n, where the data points marked as ’red squares’
represent the evaluation results obtained from additional grid test cases for
verification.

where the logarithm is natural logarithm with base e. Fig.6
shows the approximate scaling function of (19) with a root-
mean-square error (RMSE) of 1.47, evaluated based on the
numerical results of realistic grids as listed in Table II. In
order to verify the accuracy of the derived approximate scaling
function, we test on other realistic grid data such as the IEEE-
24, NE-39 buses systems and the PEGASE systems at different
levels of network reduction, with the addtional evaluation
results lised in Table III. The evaluation results obtained
from additional grid test cases for verification are depicted as
scattered data points marked by “red squares” in Fig.6, which
seem to match very well with the previously derived scaling
function, except one test case, i.e. the PEGASE-2869 system.
The non-trivial deviation of this system from the scaling curve
we think might come from an inaccurate network reduction
which causes the relative location of generation and loads
inconsistent with the original grid settings.

Therefore in our synthetic grid modeling, we will be able
to utilize a scaling function as below to determine the tar-
get entropy value for the correlated bus type assignments
W ∗(n) = W (T∗|n):

W ∗(n) = µ+ σ · dW (n), (20)
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where dW (n) is calculated using (14), and (µ, σ) estimated
from the empirical PDF of the entropy values of randomized
bus type assignments in a given grid topology with specified
bus type ratios.

V. THE SCALING PROPERTY OF OTHER ELECTRIC
PARAMETERS

After studying the scaling property of the small-world
connecting topology and determining the topological location
of generation and loads in a grid, it would be ideal and same
critical to further examine the scaling property of other electric
parameters such as the generation capacities, load settings, and
transmission capacity, just as indicated in Section II.

Table IV presents the evaluation results of total generation
capacity, total demand, and total backbone transmission capac-
ity of some realistic grids, with the corresponding definitions
as:

P tot
G,max =

∑
i∈G

P i
G,max, (21)

P tot
L =

∑
i∈L

P i
L, (22)

F tot
max =

∑
l∈BKB

F l
max. (23)

Fig.7 plots the total generation capacity and total demand in
the grid systems as listed in Table IV and the ratio between the
two versus the network size. The scaling functions obtained
from the curving fitting approach are given as follows:

logP tot
G,max(n) = −0.21(logn)2 + 2.06(log n) + 0.66, (24)

logP tot
L (n) = −0.20(logn)2 + 1.98(log n) + 0.58, (25)

where both P tot(n)’s are measured in MW and the logarithm
is with base 10.

From Fig.7 we can see that when the network size is small
(i.e. n < 300), the total generation capacity and demand in
a grid tend to grow as a power function, i.e., P tot ∝ n2.0.
However, as the network size becomes larger, the scaling
curves begin to bend down and grow slower than that power
function. However the ratio of the two, rG/L = P tot

G,max/P
tot
L ,

tends to slowly drop down from above 1.50 and draw closer
to 1.00 as the network size increases.

TABLE III. ADDITIONAL EVALUATION RESULTS OF THE RELATIVE

DISTANCE OF dW (T∗, T̃)

(µ, σ) W (T∗) dW (T∗, T̃)
IEEE-24 (2.5, 8.4e-2) 2.61 1.30

NE-39 (2.65, 6.4e-2) 2.51 -2.16

PEGASE-89 (2.51, 6.5e-2) 2.38 -2.01

PEGASE-1354 (2.66, 1.0e-2) 2.64 1.90

PEGASE-2869 (2.62, 7.5e-3) 2.65 4.01

PEGASE-9241 (2.84, 6.0e-3) 2.58 -43.33

PEGASE-13659 (2.8, 3.0e-3) 2.56 -80.70

(a)

(b)

Figure 7. The scaling property of the total generation capacity and demand
in realistic power grids:(a) the total generation marked by ’black squares’ and
total demand marked by ’+’ ; (b) the ratio of the total generation to the total
demand.

Our initial study on the statistical distribution of generation
capacity and demand within a power grid based on some
realistic grid data such as the PEGASE, the WECC, and
the NYISO systems, shows that the generation capacity and
load settings approximately follow an exponential distribution,
as shown in Fig.8-10. It is interesting to note that in the
PEGASE 13659-bus system, about 99.9% of the generators
have capacities following an exponential distribution except

TABLE IV. TOTAL GENERATION CAPACITY, DEMAND, AND TOTAL

BACKBONE TRANSMISSION CAPACITY IN SOME REALISTIC GRIDS

P tot
G,max(MW) P tot

L (MW) rG/L F tot
max(MW)

IEEE-24 3.41e3 2.85e3 1.19 1.87e4

IEEE-30 3.35e2 1.89e2 1.77 1.95e3

NE-39 7.37e3 6.25e3 1.18 3.37e4

IEEE-57 1.98e3 1.25e3 1.58 –

PEGASE-89 9.92e3 5.73e3 1.73 9.59e4

IEEE-118 9.97e3 4.24e3 2.35 –

IEEE-300 3.27e4 2.35e4 1.39 –

PEGASE-1354 1.29e5 7.31e4 1.76 8.99e5

PEGASE-2869 2.31e5 1.32e5 1.74 1.93e6

NYISO-2935 5.47e5 3.95e5 1.38 2.65e5

Polish-3375 7.11e4 4.84e4 1.47 1.37e6

ERCOT-5633 1.02e5 7.28e4 1.40 1.84e6

PEGASE-13659 9.81e5 3.81e5 2.57 2.27e6

WECC-16994 2.46e5 1.74e5 1.41 4.49e6
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(a)

(b)

Figure 8. The empirical PDF of generator capacities and demands in the
PEGASE-13659 bus system

0.1% with very large capacities falling out of the normal range.
In the WECC 16994-bus system and the NYISO 2935-bus
systems, approximately 99% of the generation capacities (and
the loads as well) follow an exponential distribution while
only 1% with extremely large capacities (or demands) falling
out of the expected normal range. We will continue the study
on this aspect to determine the cause of observed distribution
exceptions, which may either come from an inherent heavy-
tailed distribution or only result from boundary equivalization
in a network reduction modeling. Our study also shows that
there exists correlations between the total number of branches
connecting a bus (that is, its node degree) and the generation
or load attached to the bus.

Fig.11 shows the scaling property of total backbone trans-
mission capacity in a grid. The fitting curve is depicted as a
dashed line for the scaling function of F tot

max(n). The straight
line in the log-log plot implies that the total transmission
capacity of the grid backbone branches grows as a power
function, F tot

max(n) ∝ n0.9059.

VI. CONCLUSIONS AND FUTURE WORK

This paper expands our past work on random topology grid
modeling with a study on the scaling property of power grid
in terms of both topology measures and electric parameters,
with all the available realistic power grid test cases of different
sizes. The examined measures and parameters include average
node degree, average path length, algebraic connectivity, the
bus type entropy that characterize relative locations of genera-
tion and load buses, generation capacity, total demand, and
transmission capacities. Interpreting and testing the scaling

(a)

(b)

Figure 9. The empirical PDF of generator capacities and demands in the
WECC-16994 bus system

(a)

(b)

Figure 10. The empirical PDF of generator capacities and demands in power
grids in the NYISO-2935 bus system

property of power grid help us better understand the intrinsic
characteristics of this critical infrastructure of electric energy
delivery; and enable the development of an appropriate syn-
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Figure 11. The scaling property of the total backbone transmission capacity
in realistic power grids.

thetic modeling that could be utilized to generate power grid
test cases of scalable network size and with accurate grid
topology and electric parameters.

We have improved and redefined a novel topology measure,
called the Bus Type Entropy, to characterize the bus type
assignment of realistic power grids. The newly proposed
measure has better numerical stability since it follows more
strict entropy definition therefore it will simplify our analysis
of the scaling property of the entropy value versus the network
size. We examine the performance of the proposed measure on
the IEEE test cases, the NYISO, the ERCOT, and the WECC
systems based on the empirical probability density function
analysis. Numerical results obtained from both systems verify
the effectiveness of the proposed measure to characterize the
correlated bus type assignment of a real-world power grid and
help us determine an scaling function of bus type assignment
versus network size. The derived approximate scaling property
based on the entropy definition has been further verified with
additional experiment results obtained from IEEE 24, NE-39
buses systems and some PEGASE systems with different levels
of network reduction.

This paper also presents our initial study on the scaling
property of electric parameters such as total generation ca-
pacity, total demand, and backbone transmission capacity. It
shows that when the network size is small, the total generation
capacity and demand in a grid tend to grow as a power
function, P tot ∝ n2.0. However, as the network size becomes
larger, the scaling curves begin to bend down and grow slower
than that power function . However the ratio of the two tends
to slowly drop down from above 1.50 getting closer to 1.00
as the network size increases. The total backbone transmission
capacity tends to grow as a power function of network size,
F tot
max(n) ∝ n0.9059.
Our study on the statistical distribution of generation ca-

pacity and demand within a power grid based on some
realistic grid data such as the PEGASE, the WECC, and the
NYISO systems, shows that the generation capacity and load
settings approximately follow an exponential distribution. It
is found that most (> 99%) generators (and loads as well)
in these two power grids have the capacities (or demands)
assuming an exponential distribution with a very small portion

of exceptions with extremely large generation capacity (or
demands).

In the future further experiments and verification on other
realistic power grid data and based on grid vulnerability
analysis will be performed. The scaling properties obtained
from the realistic grids will be incorporated into our synthetic
grid modeling.
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