Blessing or Curse? Towards an Integrated Framework of the Net Effect of Mobile IS/IT Use in Organizations

Research-in-Progress

Nikolaus Fischer
EBS Business School
Gustav-Stresemann-Ring 3
65189 Wiesbaden, Germany
nikolaus.fischer@ebs.edu

Stefan Smolnik
University of Hagen
Universitätsstr. 41
58097 Hagen, Germany
stefan.smolnik@fernuni-hagen.de

Abstract

A steadily increasing number of organizations are adopting mobile computing devices. There is broad consensus in literature that mobile information systems (IS) and information technology (IT) use can entail positive effects in an organizational context. However, scholars have begun to assess the downsides of mobile IS/IT, including work-life conflict, spillover effects, and increases in stress. The aim of our study is to provide a balanced overview of the benefits and drawbacks of mobile IS/IT use in the form of a conceptual research model in order to ultimately assess the net productivity impact of individual mobile IS/IT use in organizations. We base our model on a deductive-inductive research approach, combining an extensive literature review and 17 interviews with mobile computing experts in major German and Swiss public corporations. We provide a statistical validation of our measurement model using survey-based data, which enables other researchers to make use of our measurement instrument.

Keywords: Mobile computing, IS use, productivity, work performance

An earlier version of the conceptual model has been presented at ICMB 2013 (Fischer and Smolnik 2013b). We have since started collecting empirical data and present our initial statistical analyses in this paper.
Introduction

The organizational use of smartphones and tablets offers several well-documented benefits that are recognized in literature and practice (Scornavacca et al. 2006; Gebauer et al. 2004). However, mobile computing use also entails a number of known drawbacks. These include an increase in work stress (Tarafdar et al. 2011) and negative impacts on employees' work-life balance (Boswell and Olson-Buchanan 2007). Although a remarkable 94% of Fortune 500 companies are currently testing tablets and a similar number of companies are deploying smartphones in their organizations (Sloan 2012; van der Meulen and Pettey 2012), it remains unclear whether the net impact of adopting mobile information systems (IS) is truly positive. Few scholarly studies assess the benefits and drawbacks of mobile IS/IT in an organizational context. These typically focus only on a select few issues instead of drawing a comprehensive picture of mobile computing use and synthesizing results (Fischer and Smolnik 2013a).

Gebauer and Shaw (2004) conclude that “research on mobile technologies has yet to take the step from providing general overviews of technical concepts and issues based on anecdotal evidence to a more thorough understanding of the underlying causal structures and how they relate to the established body of beliefs and paradigms in information systems research” (p. 20). The overall objective of our research endeavor is therefore to develop a comprehensive model of the benefits and drawbacks of mobile IS/IT use in an organizational context in order to gauge whether it exhibits a positive net effect. Specifically, in our research in progress paper, we aim to answer the following research question: What are the benefits and drawbacks of individual mobile IS/IT use within the organizational realm?

To answer this question, we derive a set of hypotheses from existing literature on the impact of individual mobile computing use in organizations. Then, we draw on multiple expert interviews to refine the deductively developed hypotheses and to inductively derive new constructs from the qualitative data. This deductive-inductive approach (Gilgun 2001; Robinson 1951) enables us to combine insights from both theory and practice in order to arrive at new results. After detailing the development process of our measurement instrument, we report on the conceptual and statistical validation of the survey instrument using survey-based empirical data.

Our contribution is threefold: First, we contribute to theory by synthesizing and structuring the benefits and drawbacks of mobile IS/IT found in existing literature. Second, we present a comprehensive model of mobile IS/IT use benefits and drawbacks on the individual level in an organizational context. Third, our validated measurement instrument enables researchers to assess the net effect of mobile IS/IT implementations in practice. In addition, future research can build upon the developed model.

Theoretical Background

Scholarly interest in mobile computing has increased in recent years due to the large proliferation of increasingly powerful mobile devices, such as smartphones and tablets (Scornavacca et al. 2005). They facilitate a broad range of tasks, from inscribing and storing data to handling communication and decision making (Lyytinen and Yoo 2002). The attuned combination of hardware and software features has led both consumers and organizations to adopt them broadly (Friedewald and Raabe 2011).

The adoption and use of IT is a mature research area (Tornatzky and Klein 1982; Rogers 1983; Davis 1989). We argue that current mobile devices such as smartphones and tablets are substantially different from their static cousins with regard to a number of aspects, which warrants further scientific investigation. Features such as their always-on nature, continuous connectivity, long battery life, and consumer-friendly interface make these devices truly ubiquitous (Schwarz et al. 2004). They are being used in a variety of different contexts, including at home, at work, and in society in general for a diverse set of tasks (Scheepers and Scheepers 2004). Modern mobile devices have thus enabled the “anywhere, anytime” aspiration of computing visionaries (Weiser 1991). For the purpose of this study, we define mobile IS/IT as the technical foundation, tools, and materials (IT) and the higher level processes, architecture, and design (IS) (Laudon and Laudon 2002) required to enable a nomadic work environment, in which technology provides its users with access to systems, files, and services independent of location (Kleinrock 1995). Specifically, we believe that modern smartphones and tablets are indispensable to achieving such an environment.
While scholarly research has been quick to develop and evaluate hardware and software artefacts for the mobile realm, scientific investigations into the effectiveness of mobile IS/IT in an organizational context have so far lagged behind (Ladd et al. 2010). It remains unclear whether mobile IS/IT use in organizations entails a wholly positive, or, in fact, negative impact. While initial empirical evidence exists that organizational mobile IS/IT use may indeed increase individual productivity (e.g. Scornavacca et al. 2006; Gebauer et al. 2004), there is an equal amount of research on the potential downsides of employee mobile IS/IT use. These include drawbacks such as an increase in work stress (Sarker et al. 2012) and a worsening of employee work-life conflict through the increasing level of availability required of them (Prasopoulou et al. 2006). We draw upon Seddon’s (1997) and DeLone and McLean’s (2003) discussion regarding net effects/impacts of IS use to frame our analysis of benefits and drawbacks. DeLone and McLean (2003) make use of the net benefits construct in an update of their IS success model in order to capture both positive and negative impacts of technology use. Seddon (1997) conceptualizes net benefits as “an idealized comprehensive measure of the sum of all past and expected future benefits, less all past and expected future costs, attributed to the use of an information technology application” (p. 246).

Research Approach

The focus of our research is on the individual rather than the organization as a whole: Even though an organization decides on the adoption of mobile computing artefacts, or implements BYOD policies, it is the individual employee who chooses the extent of use and who is the one directly experiencing the benefits and drawbacks of the technology. In line with Chan (2000) and Rai et al. (1997), Petter, DeLone, and McLean (2012) caution that the benefits measures “should be at the level of analysis at which the value was being realized” (p. 346), which we have heeded by focusing on the individual user.

To derive initial constructs from extant theory, we conducted an extensive review of the existing literature on the impact of mobile computing in organizations, as recommended by Webster and Watson (2002). Using the keywords “mobile computing”, “ubiquitous computing”, and “pervasive computing”, we searched the leading 30 journals in the IS discipline (as ranked by the Association for Information Systems (AIS)), four major IS conferences (AMCIS, ECIS, HICSS, ICIS), and three specialty journals on mobile and ubiquitous computing (Mobile Information Systems, Mobile Networks & Applications, and Personal & Ubiquitous Computing). This search resulted in 449 publications. An initial filtering to ensure that articles dealt with our focal topic of the impact of mobile, ubiquitous, and pervasive computing brought the number of considered papers down to 101 publications. We then systematically categorized the final set of papers by applying a rigorous classification scheme based on the mobile computing impact framework by Scheepers and Scheepers (2004). We extended it by adding further categories and criteria to incorporate all relevant facets of our research objective. The systematic nature of the search for relevant articles ensures an in-depth review, even though we concur with Webster and Watson (2002) that no review can be truly exhaustive due to information processing and resource constraints. From the thus classified literature, we developed a priori constructs and effect relationships to build an initial model. To increase our study’s internal validity and generalizability, we used extant literature and theories for this process (Eisenhardt 1989).

To triangulate the results from the literature review and to refine the model developed from existing theory, we drew on 17 expert interviews conducted between June and December 2011. The interviews were conducted in 17 global, publicly traded organizations, stemming from a diverse set of industries. Interview partners were sampled using an expert sampling strategy based on the self-reported expertise of the respective interview partner from companies using mobile IS/IT for internal purposes. Data collection consisted of in-depth face-to-face or telephone interviews with employees in charge of enterprise apps (C-level executives, business unit leaders, and project managers), lasting for an average of 100 minutes. Interviews were recorded, transcribed, and coded independently by two researchers using qualitative data analysis software (NVivo9). The coding scheme was developed based on the results of the literature review, while still allowing for new codes to emerge from the dataset. The interviews provided us with a deep insight into the managers’ expectations towards mobile IS/IT use and the hoped-for benefits as well as potential drawbacks.
Conceptual Model Development

Our research model encapsulates both the benefits and drawbacks of mobile IS/IT use in order to present a balanced view on the studied phenomenon and to assess the net effect of mobile IS/IT use on individual productivity. The research model we propose in this paper (see Figure 1) postulates that the use of a mobile IS/IT solution entails a number of individual benefits, which can be classified into task-related and personal benefits. In addition, four major drawbacks of mobile IS/IT use are included in the model: We assume that the enumerated benefits increase individual productivity, while the drawbacks lead to a decrease in productivity. The benefits and drawbacks are summed into a net productivity impact, accordingly. Factors that we control for are prior private mobile IS/IT use, voluntariness, age, gender, seniority, and the mobility of the employee’s job. In the following sections, we provide definitions of our constructs based primarily on existing literature and refined through our qualitative data. In addition, each construct description develops a relationship between the individual use of mobile IS/IT and the individual net productivity impact, as described above. The postulated relationships are presented as hypotheses in Table 1.

Benefits Constructs

Efficient use of downtime: Mobile devices allow their users to work anytime, anywhere. Employees can make productive use of their mobile devices in situations where it would be impractical or unseemly to use a laptop computer, such as during the daily commute or while waiting for appointments. Interviewees mentioned that the mobile device enables them to complete tasks before even getting into the office, thereby reducing their workload during the actual workday. We thus define efficient use of downtime as the degree to which the mobile device allows an employee to efficiently utilize time that would otherwise have been spent idle. As this construct inductively emerged from our interview data, there are no prior operationalizations. We therefore developed the following three items: (1) “Because of the mobile device, I am able to make productive use of time that would otherwise have been wasted (e.g. daily commute, waiting for appointments, etc.)”, (2) “The mobile device allows me to efficiently use my downtime”, and (3) “Because of the mobile device, I can complete some tasks even without being in the office”.

Figure 1. Conceptual Research Model
Information availability: One of the purported core benefits of the portability facet of mobile IS/IT is that it enables users to access the right information at the right time. An increase in information availability was among the most frequently mentioned benefits in the explorative interviews, with experts mentioning, for example, “Our mobile solution offers a channel through which the information availability at the carrier is increased. . . . They have all the required information, such as manuals, directly at hand” (Mobile Project Lead, automotive company). Nah, Siau, and Sheng (2005) mention this benefit as part of a qualitative case study of mobile workers. In operationalizing this construct, we drew on existing measures by Spreitzer (1996) and Fulk et al. (2004).

Work satisfaction: We define work satisfaction as “the degree of compatibility between the individual and the organization” (Cheney and Dickson 1982), which includes facets such as pride, prestige, and authority. We argue that using a device that is enjoyable to use and has been designed to high usability standards with the end-consumer in mind is likely to increase a user’s work satisfaction. The ability of mobile IS/IT use to increase work satisfaction was mentioned several times during our expert interviews, with interviewees stating, for example, that “[the device] is the more enjoyable device for the customer pitch – our own employees thus feel more at ease” (Director E-Marketing, electronics company). Work satisfaction was operationalized using three items from Andrews and Withey (1976).

Work motivation: Literature typically distinguishes between intrinsic and extrinsic motivation. For the purpose of our study, we consider intrinsic motivation as the “performance of an activity for no apparent reinforcement other than the process of performing the activity per se” (Davis et al. 1992). Intrinsic motivation is typically linked to perceived enjoyment (Davis et al. 1992), which is presumed to be high for mobile IS/IT due to a high level of usability. During our interview study, this construct was mentioned in connection with mobile learning. An interviewee stated that “with the mobile solution we have evoked – without coercion – a process with its own internal dynamics” (Director eEducation, national postal service). We operationalized this construct using three items from Andrews and Withey (1976).

Drawbacks Constructs

Not all effects of mobile IT/IS use are positive in nature. Several studies have found that mobile IS/IT use can entail markedly negative effects, such as a work spillover effect, where boundaries between work and private life become blurred (Boswell and Olson-Buchanan 2007), and an increase in work stress (Sarker et al. 2012). These drawbacks are likely to decrease the productivity of employees using mobile IS/IT artefacts (Sarker et al. 2012). In order to present a balanced perspective on mobile IS/IT use, we include the main drawbacks mentioned in literature and practice in our research model.

Task distraction: Mobile devices present the opportunity to immediately reply to emails and push notifications the minute they are received. However, a mobile device that vociferously proclaims the arrival of a new message is likely to distract its user from whatever else the employee was working on. Middleton and Cukier (2006) observe this issue in a study on mobile email use. Since this construct has mostly been addressed in qualitative studies, we operationalized it using three self-developed items: (1) “I am often distracted by the mobile device”, (2) “While focusing on my work tasks, I am often interrupted by the mobile device”, and (3) “I am often interrupted in my work due to alerts and notification from the mobile device”.

Information overload: According to Schultze and Vandenbosch (1998), information overload is a mental state in which the amount of information requiring the employee’s attention exceeds his/her ability to process it. It is typically reached by a high volume of communication overwhelming human processing capacity. We argue that mobile IS/IT use may lead to this state through the constant influx of emails, calls, and text messages. The breakdown of temporal and geographical barriers due to the mobility of the device is likely to increase the pressure on employees to deal with multiple pieces of information at the same time. We operationalized this construct using three items from Schultze and Vandenbosch’s (1998) information overload scale.

Work-life conflict: Boswell and Olson-Buchanan (2007) define work-life conflict as the blurring of boundaries (physical, temporal, and behavioral) that “serve to structure and demarcate the various roles an individual maintains in different domains” (p. 593). With regard to mobile IS/IT use, Prasopoulou, Pouloudi, and Panteli (2006) conclude that “professionals fear that not answering their mobile phone
after normal office hours, and thus maintain a rigid temporal boundary, would be interpreted as evading or not delivering on work responsibilities. Consequently, they succumb to a blending of their work and private time” (p. 283). A sustained lack of work-life balance has been shown to lead to a decrease in productivity (Sarker et al. 2012). In operationalizing the construct, we drew on items measuring technoinvasion by Ragu-Nathan et al. (2008).

Work stress: Work stress caused by technology use is often referred to as technostress (Ragu-Nathan et al. 2008). It is commonly attributed to information overload, an invasion of the user’s private life, or the inability to deal with the complexities of IS (Tarafdar et al. 2011). While mobile IS/IT may lead to increased flexibility, it can also induce work stress. Such stress is created by the “always-on” mentality introduced with these devices and the permanent availability that is often expected of mobile IS/IT users (Sarker et al. 2012). Work stress has been shown to significantly affect a user’s productivity (Tarafdar et al. 2011), which is why we include it in our model. We operationalized the construct using items from Ragu-Nathan et al. (2008) measuring technostress.

Net Productivity Impact

After accounting for both positive and negative effects of mobile IS/IT use, we argue that an individual’s use of mobile IS/IT leads, in total, to a net productivity impact. Time savings, easier access to information, and increased employee motivation and work satisfaction increase a user’s productivity, whereas stress and work-life conflict induced by mobile device use lead to a decrease in individual productivity. Due to the always-on, ever-present nature of modern mobile IS/IT artefacts, employees are able to perform tasks during times that would otherwise be spent non-productively, such as during their daily commute to work. However, this phenomenon may, at the same time, negatively affect their work-life balance and stress level, since the distinction between their work and private spheres is likely to become permeable. The net productivity impact construct captures the sum of these opposing influences to assess the total effect that mobile device use is having on an employee’s individual productivity. The construct is measured using three reflective items which capture the perceived net effect of using mobile devices for work purposes on the user’s individual productivity. They are based on Moore and Benbasat’s (1991) relative advantage scale.

<table>
<thead>
<tr>
<th>Table 1. Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
</tr>
<tr>
<td>H1a</td>
</tr>
<tr>
<td>H2</td>
</tr>
<tr>
<td>H2a</td>
</tr>
<tr>
<td>H3</td>
</tr>
<tr>
<td>H3a</td>
</tr>
<tr>
<td>H4</td>
</tr>
<tr>
<td>H4a</td>
</tr>
<tr>
<td>H5</td>
</tr>
<tr>
<td>H5a</td>
</tr>
<tr>
<td>H6</td>
</tr>
<tr>
<td>H6a</td>
</tr>
<tr>
<td>H7</td>
</tr>
<tr>
<td>H7a</td>
</tr>
<tr>
<td>H8</td>
</tr>
<tr>
<td>H8a</td>
</tr>
</tbody>
</table>

Instrument Development and Validation

We are currently planning the validation of the proposed conceptual model (see Figure 1) on a larger empirical scale. To do so, we have derived a measurement instrument, which can partly draw upon already developed and validated items for pre-existing constructs as outlined before. Following the advice of several scholars (e.g., DeLone and McLean 2003; Bharati and Chaudhury 2004), we have used tried and tested measures wherever possible for the operationalization of our constructs to enhance validity. In case there were no pre-existing validated items available, we have paid special attention to the
discriminant validity of these self-developed items during pretesting (Majchrzak et al. 2005). We have followed Straub’s (1989) recommendations regarding an iterative development process for the instrument creation. Along the development process of the instrument, two researchers discussed and settled all open issues. This triangulation of investigators and methodologies (Denzin 2006) aided in increasing the validity and reliability of our instrument (Eisenhardt 1989). The constructs are measured using reflective items on a 7-point Likert scale (from strongly disagree (1) to strongly agree (7)). This process yielded a total of 30 items.

Conceptual Validation

We have undertaken several steps in order to validate the proposed measurement instrument. In a first pre-test step, the instrument has been discussed with eight experts from academia and practice in order to see if the developed items are clear, valid, and unambiguous (Straub 1989). To further strengthen content and construct validity, the items have then been subjected to two rounds of Q-sorting (Anderson and Gerbing 1991) and item ranking (Bohrnstedt 1970) with two groups of IS researchers. We opted for such an extensive validation procedure, as some of the measurement items were combined from more than one source or even self-developed. We used a computer-based tool to allow judges to assign and rank the available items, rather than relying on physical paper cards in order to streamline the sorting and ranking process. Following Moore and Benbasat’s (1991) advice, we allowed judges to deem an item as “unclear/ambiguous” to prevent judges from having to force fit items to a particular construct. To assess how consistent judges matched the items to their constructs, we calculated the item placement ratio (IPR) for each of the constructs. The IPR is a percentage-measure of how many items were assigned to the intended construct by the judges (Moore and Benbasat 1991). The card sorting and ranking exercise was conducted in two rounds with five IS researchers participating per round. In the first round, the judges correctly assigned 86% of the items to the intended constructs. Accordingly, we adapted or dropped a number of items, particularly where judges had indicated that the items were ambiguous or unclear. These changes lead to an increase in the IPR in the second round (conducted with five different IS researchers), where the IPR equaled 93%, demonstrating the positive effect of modifying the items after the first round. As a result of the judges’ feedback during the second round, we improved one item by rewording it. Five constructs had an IPR of 100%, while the remaining constructs varied between 73% and 93%, which shows a satisfactory item placement consistency. Table A1 in the online supplement to this paper depicts the results of the second card sorting round and the IPRs of the first and second round. Through the card sorting and ranking exercise, we attained a high degree of construct validity and reliability (Moore and Benbasat 1991). Table A2 in the online supplement shows our final instrument after the second card sorting round.

Reliability and Validity Analysis

In order to evaluate the proposed research model, we are currently in the process of collecting empirical data in a listed German company with 10,000 employees in the technology sector using the developed survey instrument. Participants were invited via email to complete the survey in an online-based survey tool. At the time of writing, 246 employees had completed the survey. We have used this initial dataset to assess the discriminant, convergent, and nomological validity and reliability (Williams et al. 2009) of our measurement model. The structural model will be evaluated once the data collection phase is complete.

In order to assess our measurement model, we opted for a partial least squares (PLS) approach (Marcoulides 1998) using SmartPLS 2.0 M3 (Ringle et al. 2005). PLS is recommended in situations where the theory base is still evolving (Chin and Newsted 2000), as is the case with the organizational use of mobile IS/IT. In addition, PLS’ focus on prediction is helpful when tackling managerially relevant issues (Fornell and Bookstein 1982). We followed Straub et al.’s (2004) and Lewis et al.’s (2005) recommendations to test the measurement model for unidimensionality, internal consistency, indicator reliability, and discriminant and convergent validity using commonly accepted cutoff criteria.

Unidimensionality, which refers to a construct’s measurement items relating better to itself than to any other constructs, was tested using an exploratory factor analysis (EFA). Loading coefficients above 0.6 are

1 accessible via http://tinyurl.com/MobileISIT-Online-Supplement
commonly considered high, whereas coefficients below 0.4 are considered low (Straub and Gefen 2005). We used SPSS 22 to perform an EFA using principal component analysis and Varimax rotation with Kaiser normalization (see Table A4 in the online supplement). The EFA demonstrates a high level of unidimensionality, as all of the measurement items load highly on a specific factor. Internal consistency is traditionally established by assessing Cronbach’s alpha (CA), with alpha values above 0.7 (Cronbach 1951; Nunnally and Bernstein 1994). To account for some of the deficiencies of CA, we also calculated composite reliability scores, as recommended by (Chin 1998). As shown in Table A3 of the online supplement, all constructs exhibit a CA and CR value of more than 0.7. Indicator reliability is a gauge of whether a variable measures what it intends to measure. Each construct is assessed independently of other constructs. Items with loadings of less than 0.7 should be considered unreliable, as this would indicated that less than 50% of the item’s variance is due to the respective latent variable (Chin 1998). To assess indicator reliability, we performed a confirmatory factor analysis using PLS. In our model, all but two indicator loadings were above the threshold of 0.7. We consequently discarded the two items that were below the cutoff. Using a bootstrap procedure with 5,000 resamples, we assessed the significance of the loadings. All remaining indicator loadings were significant at a $p=0.001$ level (see Table A6 in the online supplement). Discriminant validity is the extent to which measures of different latent constructs differ from one another. An item should not inadvertently measure something else, and constructs should be sufficiently dissimilar. Discriminant validity can be assessed by evaluating the items’ cross-loadings (Chin 1998). Each indicator should correlate more strongly with its respective construct than with any other construct. This is the case in our study (see Table A7). To further establish discriminant validity, we calculated the Fornell-Larcker criterion (Fornell and Larcker 1981). This test posits that the square root of the average variance extracted (AVE) for each latent variable is higher than all other inter-construct correlations. Each latent variable should thereby account for more of the variance in its own measures than it shares with other latent variables. As shown in Table A5 in the online supplement, our study meets the Fornell-Larcker criterion. Convergent validity refers to the extent to which individual items measuring a particular latent variable concur compared to items of other constructs. A typical measure of convergent validity is the AVE of each construct (Fornell and Larcker 1981). As shown in Table A3 of the online supplement, all constructs display AVE indicators greater than the cut-off value of 0.5, which implies that the constructs exhibit adequate convergent validity (Segars 1997). To control for common method bias, we employed Harman’s one-factor test (Podsakoff and Organ 1986), which showed that no single factor accounts for a majority of the variance (27% cumulative variance accounted for by a single factor after extraction). We are aware that measuring the net productivity impact using self-reports may pose a potential source of common method bias. However, the results of Harman’s one-factor test and a marker variable test suggest that common method bias is not an issue in our study. To ensure that there is no multicollinearity among the independent variables, we calculated the variance inflation factor for each construct, which is an index of how severely the variance of a coefficient increases due to collinearity. All variance inflation factors (see Table A9) were below the suggested threshold of 5.

Conclusion and Next Steps

Our review of the extant literature on mobile IS/IT has revealed that there is currently no comprehensive model of the individual benefits and drawbacks of mobile IS/IT use within organizations. We therefore developed such a model based on existing research and qualitative interview data from 17 companies. Following the model-development, we developed a survey instrument to validate the proposed model. We have shown that the instrument is reliable and valid using the first 246 survey responses that we have collected so far. In a next step, we will test our hypotheses that were derived following a deductive-inductive approach on a larger empirical scale. To do this, we will evaluate the structural model presented in Figure 1 after the completion of our data collection phase. Although our hypotheses may appear to be apparent, the important contribution of our research lies in the consolidation of the benefits and drawbacks of mobile IS/IT use, resulting in a net productivity impact. Our results will enable us to discern whether the net effect of using mobile IS/IT in an organizational context on the employees’ productivity is truly positive, or, conversely, negative, which carries far-reaching implications for theory and practice. Our focus on the ultimate net effect of using mobile devices has the potential to resolve the dissent in theory, with one faction of researchers pointing to the negative impacts of mobile device use in an organizational context, while the other emphasizes the positive effects. Our research enables practitioners to make an informed decision regarding the continued use of mobile devices for work purposes.
References

