The Value of Social Shopping Networks for Product Search and the Moderating Role of Network Scope

Camille Grange
Sauder School of Business
University of British Columbia
Vancouver, V6T 1Z2, Canada
and
HEC Montréal
Montréal, H3T 2A7, Canada
camille.grange@hec.ca

Izak Benbasat
Sauder School of Business
University of British Columbia
Vancouver, V6T 1Z2, Canada
izak.benbasat@sauder.ubc.ca

Abstract

Online shoppers are increasingly embedded into social networks via digital platforms in which they can use social connections as a means to discover and learn about products. In these settings, consumers do not start on equal informational grounds because their ability to reach products and opinions depends on where they are located in the network. In this paper, we study how a social network-enabled shopping environment influences product search (i.e., how consumers mobilize the bundle of features offered to them to reach products and acquire information) and subsequent consumer outcomes. In addition, we examine network scope, an important design attribute of a social shopping network, by looking into the implications of ‘open’ (i.e., when shoppers can freely traverse the whole network structure) and ‘private’ (i.e., when shoppers can only navigate within their personal network) designs. This paper presents a preliminary report of a research project aimed at addressing these questions.

Keywords: Social media, Social shopping networks, Social navigation, Social capital, Electronic commerce, Consumer value, Information seeking strategies.
Introduction

Online shopping has been morphing into online social shopping, namely, the use of social media to assist customers in the buying and selling of products and services (Wang and Zhang 2012). This study focuses on online social shopping networks (OSSNs), a specific type of social shopping artifact that relies on social network features to enhance shopping experiences.

OSSNs differ from both traditional e-Commerce and social network (SN) sites in that they enable users to form links with each other (e.g., 'following' or 'friending' others) and with products (e.g., 'bookmarking' or 'liking' a product), thus facilitating activities such as social product search (e.g., looking for products that friends have liked or purchased) that were inhibited without the presence of features leveraging SN (people-to-people links) and user-generated content (UGC, people-to-products links) together. In practice, OSSNs may take the form of intermediary platforms on which products or services are purchased from third-party e-vendors (e.g., Kaboodle, Pinterest, TripAdvisor), acquired off-line (e.g., Foursquare, Yelp), or provided by end-users themselves (e.g., AirBnB). Alternatively, retailers may also create OSSNs by integrating their own websites with an existing online SN such as Facebook (e.g., Netflix).

OSSNs are generating enthusiasm from shoppers that are eager to share product-related content with their friends (Hall and Zarro 2012). They are also triggering commercial interest from retailers. For instance, in March 2013 Amazon, the largest online vendor, acquired Goodreads, an OSSN that allows its 16 million users to manage virtual bookshelves and track what friends are reading. Yet, it appears that many online stores remain reluctant to provide SN-enabled shopping experiences and that social shopping is still at an experimental stage prone to uncertain business outcomes.

Given the essential role of customer value in driving business value (Vandermerwe 2000), we chose the former perspective to anchor the present study of OSSNs. That is, we investigate the general question of if and how consumer benefits (conceptualized via the notions of serendipity, diagnosticity, and satisfaction) can be achieved by affording SN-enabled shopping experiences. In particular, the present research focuses on how consumers' product search is influenced by a social shopping network's scope.

Product search is considered as an ill-defined information seeking activity conducted with and within an online shopping environment for the purpose of identifying products of interest for consumption (Moe 2003). Hence, product search tends to be exploratory and opportunistic, similar to informal search and browsing, and in contrast with directed activities such as querying and retrieving that are driven by specific goals (e.g., Choo et al. 1999; Marchionini 1995).

Network scope is a design issue that emerges when UGC and SN features come together. It refers to rules about the distance that shoppers are allowed to traverse away from their current location in the SN into which they are embedded. A narrow scope implies strongly differentiated (i.e., unequal) access to product information between users. This is the case of private networks (e.g., Facebook), in which users can only reach the content created by others to whom they are directly connected. Alternatively, a much weaker differentiated access is afforded on an OSSN with a broad scope. This is the case of open networks (e.g., Pinterest), in which there is no limit in traversing the network so that users can access resources created by any other user. In sum, the study of social shopping network scope allows the relaxation of an assumption often made in prior research whereby IS users start on equal informational grounds. Thus, it provides an opportunity to investigate the role of social embeddedness induced by OSSN platforms on the quality of shopping experiences. Against this backdrop, the present paper takes a consumer-focused perspective that aims at answering the following research questions:

1 We concur with the distinction made between social shopping and social commerce: “The two terms are different in scope: social shopping is a subset of social commerce, and thus it has a narrower scope than social commerce.” (Wang and Zhang 2012, pp. 108)
2 By traditional e-Commerce and SN sites, we mean those that currently do not include social and product-related functionalities, respectively. As one reviewer mentioned, while the majority of e-Commerce and SN sites are presently ‘traditional’, it is possible that they become by default ‘hybrid’ in the future, and thus, that the label (OSSN) used in this paper to distinguish traditional e-Commerce sites from those incorporating SN features might become unnecessary. This does not, however, question the relevance of studying those hybrid systems, whichever their designation.
3 http://techcrunch.com/2013/03/28/amazon-acquires-social-reading-site-goodreads/
4 http://www.sociablelabs.com/download-login-study/
(1) How do consumers use an OSSN for product search compared to the use of a traditional (i.e., non SN-enabled) shopping website? How do OSSNs with narrow vs. broad scope influence product search? In which ways does this effect depend on users’ different levels of social capital on the OSSN?

(2) How do the characteristics of the product search process followed by consumers during OSSN use influence their shopping experiences (in terms of serendipity, diagnosticity, and satisfaction)?

Literature Review

Online social shopping is enabled through diverse models and IT platforms such as those allowing consumers to read or write product reviews (Mudambi and Schuff 2010), collaborate in real-time (Zhu et al. 2010), coordinate to obtain discounted group price (Jing and Xie 2011), co-create products (Poetz and Schreier 2012), or contribute to and search for product knowledge while being embedded within a social network, which constitutes the focus of the present paper. A handful of academic studies have started to examine OSSNs. Some have taken social shopping as a context to investigate user acceptance (Dennis et al. 2010; Shen and Eder 2011; Shen et al. 2010). A few other studies have examined features that are part of OSSNs, such as those enabling users to tag and create lists of products (Olbrich and Holsing 2011) or to explore content using user-generated links (Goldenberg et al. 2012).

In sum, the literature on the OSSN phenomenon is at a very early stage, and appears less mature and developed compared to other social media sub-domains (e.g., the use of social media in organizations - Majchrzak et al. 2009, Culnan et al. 2010, Gray et al. 2011; the use and privacy issues related to online social networks - Christofides et al. 2009; Krasnova et al. 2010; Zhao et al. 2008). This might be partly because the emergence of social shopping has been recent, and also because its evolution has been fast and driven by paradigm-changing technological developments (e.g., social network portability, that is the ability to carry users’ profiles and social graphs across sites) (Wang and Zhang 2012). Another possible reason is that given the complex nature of OSSNs (i.e., they provide a SN architecture to a shopping experience that is delivered via an IT platform), conceptual tools necessary for their study still need to be advanced. The next section synthesizes the integrative theoretical foundations used in this study.

Theoretical Background

Given that OSSNs are IT-enabled networks, that is, not just networks and not just any IT, research on their design, use, and effects is likely to benefit from theoretical grounds accounting for both perspectives (Grange and Benbasat 2013).

The IS Perspective: Features, Affordances, and Use

IS scholars generally agree that IT artifacts can influence human actions, in that “the materiality of an object favors, shapes, or invites, and at the same time constrains, a set of specific users” (Zammuto et al. 2007 p. 752). The Technology Affordances and Constraints Theory (TACT) is in line with this belief and provides a useful framework for researchers studying the use and outcomes of information systems (Majchrzak and Markus 2013; Volkoff and Strong 2013). TACT distinguishes between the key concepts of features, affordances, and use. Features are the bundles functionalities and procedures designed into an IT object, that is, they are material properties. Affordances, and their counterpart, constraints, are viewed in terms of action potential or restriction, respectively. Use refers to actions that actors conduct with the IT object, in a particular context, for a particular purpose, and given their personal characteristics; it is how the potential of an IT gets activated when interacting with an IT object (Leonardi 2007).

TACT assumes that affordances ‘frame’ rather than ‘determine’ human actions (Hutchby 2001). It is therefore aligned with the idea that while IT artifacts offer options for appropriation (Markus and Silver 2008), there is likely to be flexibility in how features are leveraged given variations in users’ goals (Carver and Scheier 1991) and in their understanding of what an IT has to offer (Orlikowski 2000). Conceivably in the specific OSSN context, the quality and quantity of the informational resources available to users given the SN structure in which they are embedded are also likely to be relevant contingency factors.
The SN Perspective: Structures, Affordances, and Actions

The “hard core” of organizational network thinking focuses on network structures as the primary causal agents responsible for outcomes of interest (Kilduff et al. 2006), and relies on an explanatory model whereby interpersonal structures afford or constrain flows of content that distribute resources to socially embedded actors (Borgatti and Halgin 2011). Although network theories tend to disregard the role of agency (Kilduff and Krackhardt 1994), recent work noted variations in how individuals activate their network for achieving goals (Smith et al. 2012). In other words, it appears that “occupying a certain structural position carries certain potentialities, but the actual outcomes may depend on a number of additional factors, including “how the actor plays it” (Borgatti and Halgin 2011 p. 11). This idea is important because the assumption that social actors selectively distribute information to others may not systematically hold in digital network settings (Gray et al. 2011), and instead, selective information seeking is likely to become an a priori stronger differential factor for explaining outcomes.

In sum, the SN literature suggests that studying product search in contexts where shoppers are socially embedded would need to account, both theoretically and empirically, for (i) the nature and extent of the content being accessible within the network, and (ii) online shoppers’ actions, i.e., how these actors proceed to mobilize the social structure into which they are embedded to reach content (Lin 2001). Fortunately, OSSNs are well positioned to meet this requirement as they permit the recording of digital traces of user interactions, an aspect underlined in the Method section of this paper.

An Integration of the IS and SN Perspectives

Despite their singular nature and focus, the IS and SN perspectives concur on three aspects. First, they consider that the properties of their artifact of interest (IT features and SN structures, respectively) provide affordances and constraints to the individuals or collectives who interact with and within them. Second, they believe that these affordances and constraints frame how actors can and do mobilize the functional and information potential embedded into IT features and SN structures. And third, they suggest that actors’ actions at mobilizing resources matter and ultimately influence the outcomes being achieved by these actors. This set of shared assumptions was applied to the present research’s context to derive an integrative framework, illustrated in Figure 1.

Research Model and Hypotheses

The research model, illustrated in Figure 2, maps the high-level constructs of Figure 1 to our focal context.

5 As an OSSN may be implemented in environments different from the Web – for example, as an app (Anderson and Rainie 2012) - the name platform was preferred to website.
Figure 2. Research Model

Analytically, *online shopping platform design* refers to properties of a focal IT object (Markus and Silver 2008). Concretely, it refers to a collection of *features* offered by a platform, that is, the provision or not of SN-enabled shopping environment and the rules of network scope in cases of SN-enabled settings.

Structural capital is derived from the *OSSN network structures* construct in Figure 1. It is defined as the potential value that accrues to consumers as a result of their social embeddedness (Lin 2001). Given that OSSN structures are composed of links between people, and links between people and products that stand for resources, three aspects of structural capital are considered: (1) *social connectedness*, i.e., the number of other users to whom one is directly connected, (2) *products accessibility*, i.e., the extent of available products made accessible via these users, and (3) *resources availability*, i.e., the extent of available informational resources created and shared by these users about products.

Product search results from a mapping of the middle construct of Figure 1. It captures how consumers mobilize the bundle of features offered in an online shopping environment when looking for products. Following prior work on system use (Burton-Jones and Straub 2006), we propose a rich conceptualization via four dimensions which are closely tied to the focal context: (1) *social exposure*: the extent of use of other shoppers’ profile pages for navigating during product search (2) *resource acquisition mode*: the extent of use of other shoppers’ profile pages for obtaining information about products, (3) *product access mode*: the extent of use of the social network for reaching products, and (4) *resource social relevance*: the extent of resources being obtained that are authored by social connections.

Consumer experience captures users’ evaluations of the following aspects: (1) *serendipity*, the platform’s provision of new or unexpected ideas or information (McCay-Peet and Toms 2011), (2) *diagnosticity*, the platform’s support in appraising how products might fit one’s preferences (Smith et al. 2011), and (3) *satisfaction*, users’ feelings about using the online service for product search (Bhattacherjee 2001).

Hypotheses

We developed hypotheses aligned with our research questions such that they focus on (i) the effects of OSSNs compared to non SN-enabled shopping settings as well as those of private versus open OSSNs on product search, and (ii) the effects of product search on consumers’ experience. The logic of the hypotheses is framed in the context of information foraging (Pirolli and Card 1999) and social impact theories (Latané 1981), such that the key thesis relies on considering that the set of distinctive features provided by OSSNs for reaching products and resources provide cues that encourage shoppers to make use of ‘people’ more than in traditional settings, especially when these people are highly relevant, immediately accessible and present in higher numbers. We explain next how and why this might occur as well as the implications of such proposition in terms of consumers’ experience outcomes.

6 We refer to structural capital as opposed to social capital in order to avoid typical confounding with concepts such as trust and to emphasize that we refer to potential embedded in social structures.
The Effects of SN-Enabled Shopping Environments on the Acquisition of Resources (RQ1)

Non-SN enabled e-Commerce settings are overwhelmingly focused on products. For example, on Amazon, while users are able to reach the profile pages of shoppers to read their contributions, social connections are not revealed. Given that knowledge seekers tend to favor information that is more accessible (Leckie et al. 1996) and locally relevant (Choo 1998), the prominent visibility of social connections that is afforded by OSSNs should induce users to increase their visits to other shoppers’ profile pages while navigating. Yet, as the SN literature suggests, there will be some variance in how online shoppers are able to act on this incentive depending on their social embeddedness, with users connected to more direct contacts getting supplementary cues for visiting these friends profile pages.

OSSNs induce more social exposure compared to non-SN enabled settings. This strength of this effect increases with higher users connectedness (H1a).

While private OSSNs reveal a narrow set of the social structure, i.e., the set of direct ties that a user has with others, open OSSNs reveal the entire structures allowing a user to traverse the whole network, ‘hopping’ from friends to friends, to friends of friends, and so on. Hence, Open OSSNs should encourage users to consult others shoppers’ pages more than private OSSNs, but we suggest that this will only be the case in certain conditions because open and private OSSNs become less differentiated in terms of social exposure for highly connected shoppers. This is because the amount of effort that people are willing to expend on decision tasks is limited and relies on a tradeoff with accuracy (Johnson and Payne 1985). For example, a shopper with 5 friends may traverse her first-degree connections and allocate the rest of her time to her second-degree connections. On the other hand, a shopper with 50 friends will be more likely to persist in a local navigation before moving further away, even if afforded by the platform, and therefore more likely to terminate her task before having traversed her whole local neighborhood.

Open OSSNs induce more social exposure than private OSSNs. The strength of this effect decreases when users’ connectedness increases (H1b).

Resources are relational nature (they are embedded within the links that relate shoppers to products), and therefore they can be acquired via two modes (i) via a shopper’s page, and (ii) a via product’s page. The difference is important because as we will discuss next, obtaining resources via the former mode is likely to encourage a more divergent and exploratory information seeking behavior than via the latter. Given the stronger influence of immediate and socially relevant others (i.e., friends in a SN), we suspect that social exposure will translate into an increase in resources acquired from mode (i). In turn, this mediating effect of social exposure should strengthen when shoppers’ friends have actively contributed, that is, when shoppers benefit from a higher level of resources directly accessible via their network.

Social exposure increases the extent of resources being obtained via people pages. The strength of this effect increases with the extent of resources available in shoppers’ social network (H2).

The Effects of SN-Enabled Shopping Environments on Product Reach (RQ1)

Traditional (non SN-enabled) shopping environments typically afford shoppers to search for products based on their preferences by using filtering tools discriminating products based on objective criteria (e.g., price), namely, preference-based navigation. SN-enabled shopping offers, in addition, tools for reaching products via people. In other words, OSSNs afford social navigation, an information seeking process where individuals’ locate and evaluate information while being guided by the activities of others within a network (Munro et al. 1999). Social navigation within OSSNs is enabled by two central means: (i) other shoppers’ pages, that is, when a user visits a shopper profile page and clicks on a product to which the shopper is connected (because, e.g., he/she bookmarked or reviewed it), and (ii) products social filtering, referred to as a social feed in SN literature (Ellison and Boyd 2013), which highlights the traces of interactions, hence connections, between shoppers and products (for example, product A was bookmarked by shopper B). These features provide cues signaling the relevance and trustworthiness of an information path (Indratmo and Vassileva 2012). The signaling potential of these features is likely to vary according to a focal user’s structural capital such that, for products being accessed via shoppers’ profile pages, the signal will likely increase with the number of products being associated with these shoppers,
and for products being accessed via social filtering, the extent of resource availability will influence of the visibility and accessibility and hence the strength of these cues.

OSSNs induce the use of social navigation more than preference-based navigation. This effect is greater with higher levels of product accessibility and resource availability within shoppers’ SN (H3a).

Similar to the observation made earlier that open and private OSSNs become less differentiated in terms of social exposure for highly connected shoppers, while open OSSNs are expected to trigger a higher level of social navigation, this difference is likely to vanish for shoppers with a high degree of social capital.

Open OSSNs induce the use of social navigation more than private OSSNs. This effect increases when users’ connectedness, product accessibility, and resource availability increases (H3b).

The use of other shoppers to navigate the network is the result of stronger cues encouraging shoppers to choose paths leading to products reviewed by relevant others. This intermediary mechanism should result in shoppers obtaining more resources created by relevant others, an outcome also resulting from an increase in shoppers obtaining resources via people-mediated means.

Reaching products by using social navigation causes an increase in the extent of socially relevant resources being obtained (H4). This outcome is also enhanced with increasing levels of resources being obtained via people pages (H5).

The Effects of Product Search on Shoppers’ Outcomes (RQ2)

Social settings are prone to serendipity (Nahapiet and Ghoshal 1998), the making of fortunate discoveries by accident or given unplanned opportunities (Beale 2007). Systems encourage serendipity when they enable connections, introduce the unexpected, present variety, trigger divergence, and induce curiosity (McCay-Peet and Toms 2011). Given that acquiring product resources via shoppers’ profile pages induces divergent product search and opportunistic browsing, a shift from the convergent and systematic assessment typically involved with the acquisition of product information via product pages, we propose:

Platform-induced serendipity increases with the extent of people-mediated resource acquisition (H7).

On the other hand, successful e-Commerce experience require that consumers have the right information to make their choices, and therefore, are helped for that matter by website designs that encourage product diagnosticity (Jiang and Benbasat 2007) and assist consumers in feeling informed (Smith et al. 2011). Socially relevant resources (e.g., product reviews created by friends) are likely to be more informative because they should be trustworthy and easier to evaluate than resources created by unknown others.

Platform-induced diagnosticity increases with the extent of socially relevant resources being obtained (H8).

Individuals’ affective response is another useful indicator for assessing the quality of online experiences. For example, flow is considered a sign of successful shopping experience (Hoffman and Novak 2009), especially the intrinsic enjoyment aspect of it (Koufaris 2002). As the satisfaction construct captures such affective assessments (Bhattacherjee and Premkumar 2004) and the literature has established its link with users’ utility assessments of e-Commerce environment (Cenfetelli et al. 2008), we propose:

Shopping satisfaction is positively related to platform-induced serendipity and diagnosticity (H9).

Methodology

Research Setting

In order to test the validity of the research model, we developed an experimental platform taking the form of an integrated two-module website. The products being showcased on the site are a set of restaurants in a North-American city of 2 million inhabitants. Restaurants were chosen because as ‘experiential’ products, they tend to increase consumers’ reliance on extrinsic attributes, such as, others' opinions, for assessing quality, and also because restaurants are likely to be relevant to a large portion of the population across gender, age, profession, etc. The site was integrated with Facebook, enabling us to develop features based on Facebook’s friendship connections (e.g., show a user the list of her friends).
The first module was used in the preliminary phase of this study (conducted in February-March 2013) to recruit participants and get them to connect with restaurants (i.e., by writing reviews). Social connections were captured when users sign-up to our site as they granted access to our Facebook App, which recorded their (and their friends') Facebook ID. The second module makes use of the data (restaurant reviews and social relations) and constitutes the setting for the experimental phase (which is in progress).

Preliminary Phase – Creating the OSSN

The study was advertised as widely as feasible using public ads and social media networks such as Twitter and Facebook. Participants were asked to sign-up to our website and to review restaurants. At the end of the first phase, participants could refer the study to their friends by posting it on their Facebook Timeline (45% did so). After reaching a participants base of 100 people, Facebook Stories were used as an advertising means to promote the study to the friends of existing participants.

This preliminary phase yielded a social network composed of 404 users who are friends, on average, with 3.5 other users. The network is composed of a large main component (the subset of the network that is fully connected) of 314 people, whose average geodesic distance (i.e., the distance it would take for a user to connect to a randomly chosen other) is 5.4, in the range of other digital networks (Backstrom et al. 2012) that are often qualified as small worlds (Milgram 1967), i.e., networks through which it is possible to reach all others via a relative small number of intermediaries. The network also shows signs of preferential attachment as it is composed of a few very well connected nodes (e.g., 6 users have more than 15 friends) and of many others with low degree (e.g., 90 users have one friend, 74 two friends). Such networks, often referred to as scale-free networks, also commonly occur in the offline and online worlds (Barabási and Albert 1999). The preliminary phase also yielded a shoppers-by-product network: during their generating reviews session, users rated on average 15 restaurants, recommended 7.5, provided 73 tags, and wrote 1.9 open comments.

Experimental Phase– Manipulating the OSSN

The goal of the experimental phase is to assign shoppers to groups exposed to websites designed with a varying set of features matching the types of shopping settings addressed in this research, and to measure product search and consumer experience variables as specified in the research model shown in Figure 2.

Treatments

In our experimental setting, the open network condition gives access to all restaurants, all consumers, and all resources (i.e., restaurant reviews) present in the network, with users being able to traverse the whole network’s list of connections. The private network condition includes all products, but constrains users in reaching only the consumers and resources located within their personal (1-step) network. A control group is included with no SN integration, i.e., it is similar to a traditional shopping site (such as Amazon): all products, all consumers, and all resources are accessible via basic filtering means (i.e., filter restaurants by neighborhood, cuisine) but no support for social navigation is provided and users’ own list of friends is not displayed. Table 1 presents the lists of features present in each experimental treatment.

Procedures and Measures

Following prior research (e.g., Gray et al. 2011), we will randomly sample participants within the network to assign to the three experimental groups. Sampling participants does not cause modifying the social environment, i.e., although only a subset of subjects will conduct the experimental task, the whole network’s information is potentially available to them. The task will require subjects to explore the site to search for new restaurants to try out, filling a wish list to validate their selection. Subjects will be incentivized by the possibility to win vouchers redeemable at the selected restaurants.

The following product search metrics will be collected via user’s clickstreams: the number of unique shopper profile pages viewed (measure of social exposure), the ratio of the number of restaurant reviews read within shoppers’ pages over the total number of reviews read (resource access mode), the ratio of the number of restaurant pages reached by using social features over the total number of product pages reached (product access mode), and the number of restaurant reviews accessed that were created by
shoppers located at one step distance within the network (resource social relevance). After their task, participants will be asked a set of questions aimed at assessing the success of the experimental manipulations as well as the outcome variables. The manipulation check questions will capture participants’ level of awareness with respect to the informational and functional potential being afforded by the online shopping environment. The features being assessed in the questions will be chosen to reflect differences between non SN-enabled settings, and open and private OSSNs. Outcome measures are being developed using existing scales: serendipity (McCay-Peet and Toms 2011), diagnosticity (Smith et al. 2011), and satisfaction (Bhattacherjee 2001). The structural capital measures were collected during the study's preliminary phase as specified next. Resource accessibility is measured via the degree centrality of shoppers’ alters in their product network, i.e., the number of reviews that direct connections have made about products. Product accessibility is measured with the effective size of shoppers’ alters product network, i.e., the unique number of products that directions have reviewed.

<table>
<thead>
<tr>
<th>Table 1 – Operationalization of the Design Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>NON social network-enabled shopping</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Private social network enabled shopping</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Open social network enabled shopping</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Conclusions

Our methodological approach was devised so that it that would create a context for testing the proposed theory’s adequacy, i.e., for measuring constructs and effects in a way that enables the theory to be potentially disproved (Popper 1959). In Calder’s (1981) terms, priority was given to falsification rather than correspondence, and therefore, a limitation of this study is that our research setting (one single OSSN) may not be representative of the full spectrum of environmental variation present in the real world, thus possibly reducing the generalizability of our findings.

The present study is positioned in light of recent calls for the analyses of technological features in digital networks (Kane et al. Forthcoming; Oinas-Kukkonen et al. 2010; Sundararajan et al. 2013) and social shopping networks (Wang and Zhang 2012). It aims to contribute by explaining how the integration of social networks within e-Commerce settings influence consumer product search behaviors and subsequent outcomes, depending on design decisions about a network’s scope, and on shoppers’ natural social embeddedness. We expect that the data collection and analyses will be completed by the end of the Fall so that the results can be presented at ICIS in Milan, in December.

Acknowledgements

This work was supported by the Social Sciences and Humanities Research Council of Canada.
References

