E-Learning System Implementation: Implications from the Construal Level Theory

Candy K. Y. Ho
Hong Kong Baptist University, candyho@hkbu.edu.hk

Weiling Ke
Clarkson University, wke@clarkson.edu

Hefu Liu
University of Science and Technology of China, liuhf@ustc.edu.cn

Follow this and additional works at: http://aisel.aisnet.org/pacis2013

Recommended Citation
http://aisel.aisnet.org/pacis2013/243

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2013 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
E-LEARNING SYSTEM IMPLEMENTATION: IMPLICATIONS FROM THE CONSTRUAL LEVEL THEORY

Candy K. Y. Ho, School of Business, Hong Kong Baptist University, Kowloon Tong, Hong Kong, candyho@hkbu.edu.hk
Weiling Ke, School of Business, Clarkson University, Potsdam, NY, USA, wke@clarkson.edu
Hefu Liu, School of Management, University of Science and Technology of China, Hefei, Anhui, China, liuhf@ustc.edu.cn

Abstract

Understanding the factors that affect users’ acceptance of e-learning systems is critical for the success of adopting an e-learning system. Drawing upon the Construal Level Theory and the Technology Acceptance Model, we propose that the users’ construal level of the e-learning system would interact with users’ perceptions of the system (i.e., the perceived ease of use [PEoU] and perceived usefulness [PU]) and affect their attitude toward using the system and hence usage intention. A lower construal level would strengthen the effect of PU on the respondents’ attitude toward using the system. By contrast, a higher construal level would strengthen the effect of PEoU on attitude using the system. Data collected from 131 subjects in a laboratory experiment support our research model. Theoretical contributions and implications of this research are discussed.

Keywords: E-learning system implementation, Construal Level Theory, Technology Acceptance Model, Perceived usefulness, Perceived ease of use
1 INTRODUCTION

Electronic learning (e-learning) systems have attracted considerable attention from researchers and practitioners in recent years (Saade & Bahli 2005; Wan et al. 2008). The global e-learning market is expected to reach $107.3 billion by 2015 (Global Industry Analysts, Inc. 2013). “E-learning system” is an inclusive terminology that describes various information systems that facilitate learning and teaching (Lee et al. 2005). It also helps organizations reduce the cost and increase the availability of education (Chiu & Wang 2008). Since the decision to adopt a specific e-learning system is typically made by the management of an organization or the instructors who deliver the courses or training, whether students or trainees accept the system and make good use of the system plays a critical role in deciding whether the value of e-learning systems can be materialized (Lee et al. 2005). Therefore, investigating the factors that affect users’ acceptance of e-learning systems is of significance.

A plethora of studies has examined the antecedents of e-learning system acceptance. Previous research falls into two main categories: applying the Technology Acceptance Model (TAM) and its extension theories (e.g., Lee et al. 2005; Limayem & Cheung 2008; Ong et al. 2004; Saade & Bahli 2005) to understand user acceptance and examining the acceptance issue by investigating the psychological processes of users (e.g., Wan et al. 2008; Wang 2003). A review of the literature indicates that there is scant research assesses how the constructs suggested by TAM (i.e., perceived ease of use [PEoU] and perceived usefulness [PU]) interact with psychological factors in affecting users’ acceptance of e-learning systems. Research on this area will extend our current understanding of the factors that influence a user to embrace a system that is adopted by others. The findings would also shed light on how to facilitate users with different psychological characteristics to accept a specific e-learning system.

The current study is geared toward this research direction. Specifically, we draw upon TAM and the Construal Level Theory (CLT) to develop our research model. TAM suggests that the most critical factors that affect a user’s acceptance of a technology are PEoU and PU. CLT also posits that an event or object can be represented at different levels of concreteness or abstraction by different individuals (Trope et al. 2007; Trope & Liberman 2012). Construal level has been shown to have a considerable impact on the judgment and decision making of an individual (Liberman et al. 2007; Trope & Liberman 2012). Building on TAM and CLT, we argue that a user’s construal level of a specific e-learning system affects the salience of PEoU and PU in influencing the user’s attitude toward using the system. This attitude in turn affects the intention to use the system. Our research hypotheses are supported by the data collected from a laboratory experiment with 131 students from a large university.

The rest of the paper is organized as follows. Section 2 presents the theoretical underpinnings of this research and the research hypotheses. Section 3 describes the research methodology, and Section 4 reports the data analysis results. The final section discusses the findings and contributions of this research.

2 CONCEPTUAL BACKGROUND AND HYPOTHESIS DEVELOPMENT

This research is centered on the idea that individuals who construe an e-learning system at different levels would differ in the way they evaluate the system and make adoption decisions. In this section, we first explicate the concept of construal level in detail. Then, we look into the technology acceptance literature and elaborate on how differences in construal level would result in differential evaluation processes when making an e-learning system adoption decision.

2.1 CLT

The CLT states that the same event or object can be represented at different levels of concreteness or abstraction (Trope & Liberman 2003, 2010). An event construed at a relatively high level is
represented by abstract, holistic, superordinate, and decontextualized features that convey the general core information. High construal level also focuses on the “why” aspects of an event or on the value of accomplishing an event. By contrast, an event construed at a relatively low level is represented by concrete, piecemeal, subordinate, and contextual features that convey specific details of the information. Low construal level focuses on the “how” aspects of an event or on the means of accomplishing an event. For example, studying can be seen as the act of gaining knowledge (a high construal level representation) or the act of taking notes (a low construal level representation).

2.2 E-Learning System Adoption

In this research, we argue that the manner in which users construe an e-learning system influences their evaluation of the system and the extent of their acceptance of the system. According to TAM (Davis 1989), the PEOU and PU of an e-learning system are the two major factors that influence user acceptance of the system. PEOU affects a user’s perception of the usefulness of the e-learning system and a user’s attitude toward using the system. Attitude is also influenced by the user’s PU of the system. The attitude toward using the system, in turn, influences the extent of one’s intention to adopt the system (Figure 1).

PEOU is related to the effort required to use the system, such as learning costs associated with adopting a system, whereas PU is more related to the core value or benefits that a system offers. In this research, we draw on CLT and posit that PEOU is a relatively low level, secondary attribute of an e-learning system, whereas PU is a relatively high level, primary attribute of the system. Importantly, we argue that system users who adopt different construal levels tend to assign differential weights to PEOU and PU when evaluating a system and when making system adoption decisions. We explicate our reasoning below.

2.3 Influences of Construal Level on System Adoption

When people make a choice decision, how high versus low level the decision is construed has a significant impact on decision making. First, people categorize alternative options into larger and broader categories when decisions are construed at a high (vs. low) level (Liberman et al. 2002). This results in increased similarity among options. For instance, when deciding whether to adopt a new system, users with higher construal level are more likely to view different alternative systems as similar in terms of the core system benefits these systems provide, resulting in an increased perceived similarity in the PU of alternative systems. Hence PU becomes less diagnostic for making adoption decisions. Second, the increased similarity in the primary core benefits among options would increase the use of non-alignable (vs. alignable) attributes in evaluation and decision making (Malkoc et al. 2005). Thus, construing system adoption decision at a higher level would likely drive users to rely more on a non-alignable secondary attribute, that is, PEOU, during evaluation and adoption decision making. PEOU becomes more diagnostic than PU in distinguishing the differences among alternatives systems when users view system selection at a relatively high and abstract level. In other words, the importance of PU decreases as construal level increases, whereas the diagnosticity and hence the importance of PEOU in making system adoption decisions increases as construal level increases.

To summarize, based on prior research on technology acceptance (Davis 1989), we put forth the following hypotheses:
- H1: The PEOU of an e-learning system is positively related to the attitude toward using the system.
- H2: The PU of an e-learning system is positively related to the attitude toward using the system.
- H3: The PEOU of an e-learning system is positively related to the PU of the system.
- H4: The attitude toward using an e-learning system is positively related to the intention to adopt the system.

In addition, we hypothesize the following moderating effects based on the CLT:
• H5: The effect of PEoU on the attitude toward using an e-learning system (H1) is more pronounced when the system is construed at a high level than when it is construed at a low level.
• H6: The effect of PU on the attitude toward using an e-learning system (H2) is less pronounced when the system is construed at a high level than when it is construed at a low level.

Figure 1 shows a research model that summarizes the research hypotheses.

![Research Model Diagram]

Figure 1. Research model

3 METHOD

A laboratory experiment was conducted to examine the moderating role of construal level in influencing the effects of PEoU and PU on users’ responses to a new e-learning system. We collected data from a major university in Asia, which adopted a new e-learning platform in September 2012. Rather than ceasing the old e-learning platform immediately, the university has been concurrently running both platforms since then. Students and instructors can choose either the old or the new platform for their respective learning and teaching activities. The study was conducted in September and October 2012, when the new e-learning platform was just introduced.

3.1 Participants

A total of 131 students participated in the study in exchange for HK$30 (approximately US$8). Table 1 shows the demographic information of the participants.
<table>
<thead>
<tr>
<th>Prior experience in using the new e-learning platform</th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>41</td>
<td>31.3%</td>
</tr>
<tr>
<td>No</td>
<td>90</td>
<td>68.7%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>46</td>
<td>35.1%</td>
</tr>
<tr>
<td>Female</td>
<td>85</td>
<td>64.9%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 to 20</td>
<td>66</td>
<td>50.4%</td>
</tr>
<tr>
<td>21 to 25</td>
<td>64</td>
<td>48.9%</td>
</tr>
<tr>
<td>26 to 30</td>
<td>1</td>
<td>0.7%</td>
</tr>
<tr>
<td>Degree of student</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>123</td>
<td>93.9%</td>
</tr>
<tr>
<td>Postgraduate</td>
<td>8</td>
<td>6.1%</td>
</tr>
<tr>
<td>Year of study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>29.8%</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>51.1%</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>16.8%</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Table 1. Sample Demographic (N=131)

3.2 Design and Procedures

The experiment was conducted in a computer laboratory in groups of no more than 10 participants for each experiment. The study manipulated construal level into two conditions, namely, high construal level and low construal level, and randomly assigned participants to either one of the conditions. Following Freitas et al. (2004), we manipulated the construal level of participants by directing them to think about “why” (high construal level) or “how” (low construal level) they would use the new e-learning platform for their study. Participants in the high construal level condition were given an instruction sheet with the following information:

“For everything we do, there always is a reason why we do it. Moreover, we often can trace the causes of our behavior back to broad life goals that we have. For example, you are about to learn using a new e-learning platform that supports courses. Why are you doing this? Perhaps to take and complete courses. Why do you take and complete courses? Perhaps because you want to earn a college degree. Why do you want to earn a college degree? Maybe because you want to find a good job or because you want to educate yourself. And perhaps you wish to educate yourself or find a good job because you feel that doing so can bring you happiness in life.

Similarly, in this study, we would like you to think WHY you would use Blackboard, a new e-learning platform, for your study at the University.”

The information sheet also asked the participants to report WHY they would use Blackboard (1) to obtain course information and materials, (2) to prepare for the tests and assessments of the course, and (3) to interact with the course instructor and other students in the course by completing the sentence “WHY? I would use Blackboard to do so because…” for each objective.

Participants in the low construal level condition were provided with the following instructions:

“For everything we do, there always is a process of how we do it. Moreover, we often can follow our broad life goals down to our very specific behaviors. For example, like most people, you probably hope to find happiness in life. How can you do this? Perhaps finding a good job or being educated can help. How can you do these things? Perhaps by earning a college degree. How do you earn a college degree? By taking and completing courses. How
do you take and complete courses? In some cases, you need to learn using an e-learning platform that supports courses.

Similarly, in this study, we would like you to think **HOW** you would use Blackboard, a new e-learning platform, for your study at the University."

Similar to the participants in the high construal level condition, those in the low construal level condition were also asked to report **HOW** they would use Blackboard to achieve the three objectives by completing the sentence “HOW? I would use Blackboard to do so by…” for each objective. All participants were given 12 minutes to try out the e-learning platform and to complete the sentences in the information sheet. From the observation of the experimenter, all participants found this time period sufficient. After the trial, all participants responded to measures pertaining to the checking of manipulation effectiveness, PEoU, PU, and other dependent measures (see below for details). They also reported some demographic information. Finally, the participants were debriefed, compensated, thanked, and dismissed.

3.3 Measures

All the participants responded to the questions pertaining to how high level or low level they construed the e-learning system. Prior studies demonstrate that construal level affects how abstract or concrete an object is represented by an individual (Trope & Liberman 2003). High construal representations focus on the “why” aspects of an event (Vallacher & Wegner 1989), its desirability aspects (Liberman & Trope 1998), and the goals for achieving it (Agrawal & Wan 2009). On the contrary, low level representations focus on the “how” aspects of an event, its feasibility aspects, and the means to achieve it (Trope & Liberman 2010). Thus, based on these conceptualizations as well as prior studies on construal level (Kim et al. 2008), we developed and adapted three items to respectively measure high construal level and low construal level. These items were measured on seven-point Likert scales anchored from “strongly disagree” to “strongly agree” (Table 2).

The items that measure PEoU, PU, attitude toward using the e-learning platform, and the intention for using the platform were adapted from existing literature. These constructs were measured on seven-point Likert scales anchored from “strongly disagree” (1) to “strongly agree” (7). The items are listed in Table 2.

<table>
<thead>
<tr>
<th>Construct level</th>
<th>Items</th>
<th>Source</th>
</tr>
</thead>
</table>
| High Construal Level: When you are using Blackboard: | 1. To what extent did you think about why you use Blackboard?
2. To what extent did you think about what Blackboard is intended to achieve?
3. To what extent did you focus on how useful Blackboard is to support your study? | Kim et al. 2008; Liberman & Trope 1998 |
| Low Construal Level: When you are using Blackboard: | 1. To what extent did you think about how you use Blackboard?
2. To what extent did you focus on how Blackboard’s functions support your study?
3. To what extent did you focus on how easy to use Blackboard is to support your study? | Venkatesh et al. 2003 |

| Perceived Ease of Use | 1. My interaction with Blackboard is clear and understandable.
2. It is easy for me to become skillful at using Blackboard.
3. I found the Blackboard easy to use.
4. Learning to interact with Blackboard is easy for me. | Bhattacherjee 2001 |
| Perceived Usefulness | 1. Using Blackboard improves my performance in the course.
2. Using Blackboard increases my productivity in learning the course.
4. Overall, Blackboard is useful in managing my learning. | Venkatesh et al. 2003 |
| Attitude | 1. It is a good idea to use Blackboard.
2. I like using Blackboard.
3. Blackboard is very valuable. | Venkatesh et al. 2003 |
| Usage Intention | 1. Overall speaking, I will use Blackboard for my study in the future.
2. Overall speaking, I will recommend my friends and classmates to use Blackboard. | Krishnamurthy & Sivaraman 2002 |

Table 2. Measurement Items

4 ANALYSIS AND RESULTS

4.1 Common Method Bias

In this study, we collected data from a single source simultaneously. Thus, common method bias may occur. We employed Harmon’s single-factor test to ensure that this bias would not challenge the validity of the results. The results indicate that all the items in the dataset could be categorized into four constructs with eigenvalues above 1.0, accounting for 79.01% of the total variance. The first construct, which was equivalent to 36.44%, did not account for the majority of the variance. These results indicate that common method bias was not significant in this study.

4.2 Reliability and Validity

The reliability, convergent validity, and discriminant validity of the measurement were tested. As shown in Table 3, the constructs’ Cronbach’s alphas ranged from 0.714 to 0.945, and the composite reliability ranged from 0.842 to 0.967, which were all above the recommended level of 0.70. These results indicate the good reliability of the measurements. Convergent validity was tested based on the value of the loading and the average variance extracted (AVE). The results show that the loadings of all items were higher than 0.70, with the significant t-values at the p < 0.01 level. The AVE values ranged from 0.639 to 0.901, which were above the recommended level of 0.50. These results confirm the convergent validity of the measures.
To assess the discriminant validity, we calculated the square roots of the AVE of each construct and compared them with the correlations among constructs. As shown in Table 4, the square root of the AVEs for each construct, which is presented on the diagonal of the table, was greater than the correlations among constructs. Therefore, the measurement achieved adequate discriminant validity.

Table 3. Results of Confirmatory Factor Analysis (CFA) (N=131)

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Loadings range</th>
<th>Composite reliability</th>
<th>Cronbach’s alpha</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>0.905–0.932</td>
<td>0.958</td>
<td>0.943</td>
<td>0.853</td>
</tr>
<tr>
<td>PEOU</td>
<td>0.858–0.952</td>
<td>0.956</td>
<td>0.937</td>
<td>0.842</td>
</tr>
<tr>
<td>High Construal Level</td>
<td>0.722–0.868</td>
<td>0.854</td>
<td>0.736</td>
<td>0.662</td>
</tr>
<tr>
<td>Low Construal Level</td>
<td>0.768–0.818</td>
<td>0.842</td>
<td>0.714</td>
<td>0.639</td>
</tr>
<tr>
<td>Attitude</td>
<td>0.882–0.949</td>
<td>0.959</td>
<td>0.945</td>
<td>0.901</td>
</tr>
<tr>
<td>Usage intention</td>
<td>0.968–0.968</td>
<td>0.967</td>
<td>0.911</td>
<td>0.849</td>
</tr>
</tbody>
</table>

Table 4 shows that several of the inter-construct correlations were over 0.60, which indicate the potential of multicollinearity. Generally, multicollinearity is evidenced by a variance inflation factor (VIF) value higher than 10 or a tolerance value less than 0.1 (Mason & Perreault 1991). In this study, the multicollinearity test shows that the highest value of the VIF and the lowest tolerance values were 1.54 and 0.65, respectively. Thus, multicollinearity was not significant in this study.

4.3 Manipulation Check

To test the effectiveness of our construal level manipulation, we calculated the relative construal level score by subtracting the mean low construal level score from the mean high construal level score. A positive score indicates a relatively high construal level, whereas a negative score indicates a relatively low construal level. The results of an independent samples t-test reveal that the participants in the high construal condition construed the e-learning platform at a significantly more abstract level ($M = 0.038$) than those in the low construal condition ($M = -0.33$; $t(129) = 2.25$, $p < 0.05$). This result confirms the effectiveness of our manipulation.

4.4 Hypothesis Testing

The SmartPLS software was used to test the hypotheses. The relative construal level mentioned above was used to test its moderating influence on the attitude toward using the e-learning platform. The
issues. Thus, this study presents a new avenue for investigating how individuals' psychological levels have been receiving little attention. CLT has been widely studied in other disciplines, such as in facilitating conditions. The possible contingency effects of psychological factors such as construal level strengthened the effect of PEoU on attitude, providing support to H5. By contrast, the interaction between PU and relative construal level was negatively associated with attitude (β = -0.27, p < 0.01), meaning that lower construal level strengthened the effect of PU on attitude. The results support H6.

Central to this research, the results also show that the interaction between PEoU and relative construal level was positively associated with attitude (β = 0.22, p < 0.05). The results indicate that higher construal level strengthened the effect of PEoU on attitude, providing support to H5. By contrast, the interaction between PU and relative construal level was negatively associated with attitude (β = -0.27, p < 0.01), meaning that lower construal level strengthened the effect of PU on attitude. The results support H6.

The results in Figure 2 shows that PEoU positively and significantly influenced attitude toward using the system (β = 0.43, p < 0.01). Similarly, PU had a significant and positive impact on attitude (β = 0.51, p < 0.01). These findings support H1 and H2. The results further show that PEoU had a significant and positive influence on PU (β = 0.53, p < 0.01); H3 is thus supported. Attitude positively and significantly influenced usage intention (β = 0.87, p < 0.01), supporting H4.

5 DISCUSSION AND CONCLUSION

The current research explores how individuals construing an e-learning system at different levels would place different levels of emphasis on the benefits and costs associated with using the system, thereby affecting the effects of PEoU and PU on users’ attitude toward using the system, which in turn affects usage intention. Our data analysis shows that construal level strengthens the effects of PEoU and weakens the effects of PU on the attitude toward using the system.

5.1 Theoretical Contributions and Managerial Implications

This research makes two major theoretical contributions. First, we introduce CLT to extend the current understanding of technology acceptance by investigating how users’ construal of a system would affect their attitude and behavioral intentions. The existing literature on technology acceptance focuses on examining the direct effects of user perceptions on specific technology, social norms, and facilitating conditions. The possible contingency effects of psychological factors such as construal levels have been receiving little attention. CLT has been widely studied in other disciplines, such as in marketing and social psychology, but it has not been widely applied in investigating system adoption issues. Thus, this study presents a new avenue for investigating how individuals’ psychological
distance and construal levels of the system may affect their attitude and behavioural intentions. Second, we enrich Enterprise System (ES) research in general and user resistance research in particular by investigating the development of different attitudes, emotions, and behavioral intentions of large-scale system users with different foci on system usage (i.e., why vs. how to use the system). Previous studies on user resistance have primarily focused on the effects of contextual factors while ignoring the effects of individuals’ psychological states. The current study shows that the appropriate manipulation of users’ construal level would facilitate the development of consistent and favorable attitudes as well as behavioral intentions that are conducive to users’ buy-ins to system adoption.

The findings of the current research also have managerial implications for institutions and organizations. Specifically, our results reveal that construal levels affect the emphasis placed by stakeholders on different system characteristics (i.e., PEoU and PU). This means stakeholders with varying construal levels likely use different mechanisms to evaluate a system. For instance, the top management in an institution oversees the entire organization from a bird's eye view, sets long-range plans, and provides overarching directions for the organization. Therefore, the top management makes decisions for the organization, such as those pertaining to the adoption of an e-learning system, at a high construal level. By contrast, students, who are the end users of e-learning systems, primarily focus on the detailed “how-to” procedures of using an e-learning system. Thus, they tend to adopt a low construal level. Therefore, when the top management chooses an e-learning system for the organization, they tend to focus more on the PEoU aspects of the system. By contrast, students tend to focus more on the PU when they use the system.

Nonetheless, student users usually are mandated to use an e-learning system that has been adopted by others because decisions on e-learning system adoption are often made by the top management. Therefore the top management should pay more attention to the issues raised by student users and represent the system from the perspective of the students when making adoption decisions to overcome the potential conflict between the top management and student users. This approach would enable the organization to align the system assessments made by the management and the students. In doing so, the chance of user resistance at the later stages of system implementation could eventually be reduced.

5.2 Limitations and Directions for Future Research

This research has several limitations. First, we used student participants for our experiments; the external generalizability of the research results to other populations may be limited. The student participants in this study evaluated a new e-learning system and decided whether to adopt it. This scenario is similar to various situations of organizational ES adoption. Thus, the results should be highly relevant to organizational contexts. Additionally, employing an experimental method would allow us to control the construal levels of the participants and enable us to examine the causal relationships between the attitude and behavioral intentions of users. However, student subjects may behave differently than other groups of populations such as organizational employees. Future research should replicate our findings in an actual organizational context. Second, we collected subjective data from one source at one time. Hence our study may have the risk of common method bias. Although the common method bias test in our study shows that common method bias is not a problem, future research should collect objective data, such as the actual system usage of users, and conduct a longitudinal study to enhance our understanding of the casual relationships among related constructs.

Finally, some CLT-related findings may lead to predictions that oppose our contentions. Some prior studies show that high construal level drives people to focus on primary and desirability attributes, whereas lower construal level induces people to emphasize secondary and feasibility attributes (Fujita et al. 2006; Liberman & Trope 1998). Based on this line of logic, high construal level should drive users to place more weight on PU, whereas low construal level should direct users to weigh PEoU as more important in making adoption decisions. Although we do acknowledge the possibility of such effects, we believe that a more important subject should be the conditions under which these rival effects versus the effects proposed in the current study would likely occur. Our tentative speculation is that this rival effect would more likely prevail when the desirability versus desirability trade-off of...
alternative options is salient. These findings have recently been documented in a consumer study on assortment size preference (Goodman & Malkoc 2012). Further examination to identify the conditions under which our proposed effects would prevail is a fruitful direction for future research. Knowledge in this area will provide significant insights into the reconciliation of the inconsistencies in the preference of top management and organizational users when adopting new systems in organizations.

References

