Contributing Knowledge to Organizational Repositories: The Role of Governance Mechanisms

Varol Kayhan
University of South Florida

Anol Bhattacherjee
University of South Florida

Follow this and additional works at: http://aisel.aisnet.org/amcis2009

Recommended Citation
http://aisel.aisnet.org/amcis2009/199

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in AMCIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
Contributing Knowledge to Organizational Repositories: The Role of Governance Mechanisms

ABSTRACT

Two mechanisms employed by organizations to ensure information quality in organizational knowledge repositories is using experts to control or edit users’ contributions (such as in a refereed repository), or using a community of users to review, rate, or edit existing contributions (such as in a community-driven wiki). The goal of this paper is to explore these two mechanisms and study their impact on knowledge contributions by organizational members. Propositions are suggested by drawing upon self-determination theory.

Keywords

Governance, hierarchical control, expert-governance, community-governance, knowledge contribution, motivation

INTRODUCTION

Many organizations are implementing knowledge management (KM) systems to increase efficiency and effectiveness of organizational practices and enjoy competitive advantage. However, if KM systems do not provide high-quality, timely, and reliable knowledge assets, these systems are less likely to be used by knowledge workers who are expected to benefit from their use (Schuler, 1994). Two approaches currently employed by organizations to ensure information quality in repositories are: (1) use of experts or supervisors as referees to control or edit users’ contributions (e.g., a refereed repository); and (2) use of a community of users to review, rate, or edit existing contributions (e.g., a community-driven wiki). These two approaches can be considered different governance mechanisms to manage knowledge assets in organizational knowledge repositories. Drawing upon the literature on governance (e.g., Bowles and Gintis, 2002; Kooiman, 1999; Streeck and Schmitter, 1985), we refer to these two approaches as expert-governance and community-governance respectively.

Although these governance mechanisms are widely deployed by many organizations, our understanding of their impact on organizational members’ behaviors remains limited. In particular, we don’t know much about the effects of governance mechanisms on employees’ knowledge contributions to organizational knowledge repositories. The goal of this paper is to first understand these governance mechanisms, and then investigate their effect on knowledge contribution behaviors in organizations. More specifically, we investigate the following research question: what is the impact of (1) expert-governance and (2) community-governance on knowledge contribution to organizational knowledge repositories?

Studying these research questions is important for both theoretical and practical reasons. From a theoretical perspective, this study furthers our understanding of the factors that impact contributions to repositories especially when there are mechanisms to render the knowledge assets in those repositories more valuable. This is important as the impact of governance mechanisms can be incorporated into the existing models to increase explanatory power or reconcile inconsistencies. From a practical perspective, an improved understanding of governance mechanisms’ impact on contribution behaviors will enable practitioners to choose the best mechanism or manipulate the characteristics of an existing one to foster contributions, which is essential for the success of any KM initiative.

The rest of this paper is as follows. In the next section we focus on prior literature concerning contribution behaviors. In the third section, we explore the governance concept, survey self-determination theory (SDT; Deci and Ryan, 1985), and suggest propositions based on our research model. In the final section, we discuss the theoretical and practical implications of this study.

PRIOR RESEARCH

Knowledge contribution is critical for the success of any KM initiative, because if organizational members do not contribute to a knowledge repository, it is not possible to enjoy the benefits of KM in the first place (Ba, Statlaert and Whinston, 2001; Kankanhalli, Tan and Wei, 2005). For this reason, many studies try to shed light on the determinants of contribution behaviors. Since it is not possible to review all studies due to space constraints, we discuss current research using an input-process-output (IPO) framework. According to this framework, we represent the dependent variables concerning contribution behaviors as outputs; the independent variables as inputs; and the theories that provide an explanation as to why inputs are related to outputs as processes. Below we summarize this framework.
Three most commonly investigated dependent variables (i.e., outputs) in the literature are: (1) intentions to make contributions; (2) quality of contributions; and (3) quantity of contributions. The definitions and measurements of these constructs are presented in Table 1. As seen in the table, investigations concerning quality of contributions aren’t as much as intentions or quantity of contributions. Researchers focus mostly on quantity (i.e. volume) of contributions, which is measured through either self-reports or server-logs.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Definition/ Measurement</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intentions to make contributions</td>
<td>Individuals’ willingness to make contributions to a repository / Self-reported</td>
<td>Bagozzi and Dholakia (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bock et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constant et al. (1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chow and Chan (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kalman et al. (2002)</td>
</tr>
<tr>
<td>Quality of contributions</td>
<td>Helpfulness of contributions (i.e., providing a direct answer and its source) / Content analysis</td>
<td>Wasko and Faraj (2005)</td>
</tr>
<tr>
<td></td>
<td>Relevance, ease of understanding, accuracy, completeness, reliability, and timeliness of contributions/ Self-reported</td>
<td>Chiu et al. (2006)</td>
</tr>
<tr>
<td>Quantity of contributions</td>
<td>Correctness of contributions/ Simple count of correct entries</td>
<td>Chiu et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Volume of contributions / Either self-reported or based on server-logs</td>
<td>Cosley et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cummings et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dholakia et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jarvenpaa and Staples (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kankanhalli et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koh et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lin and Huang (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wasko and Faraj (2005)</td>
</tr>
</tbody>
</table>

Table 1. Dependent variables investigated in the literature

Some of the theories (i.e., processes) employed to study the above dependent variables include social capital theory, task-technology fit theory, collective effort model, social exchange theory, theory of planned behavior (and its variants), expectancy theory, and expectation-confirmation theory. Table 2 presents the studies that draw upon these theories. Although there is still a lack of an agreed-upon theory, the number of studies that use social exchange theory and theory of planned behavior is suggesting that a unified model based on these two theories can address this gap in the literature.

By drawing upon a diverse set of theories, researchers test many independent variables (i.e., inputs) to explain contribution behaviors, some of which are presented in Table 3. We organize independent variables into three categories: (1) individual factors, which represent characteristics, beliefs, attitudes, and expectations of individuals; (2) organizational factors, which represent characteristics of sponsoring organizations; and (3) technological factors, which represent characteristics of the technological designs of knowledge repositories. Among these categories, researchers focus mostly on individual factors and suggest new variables in each study with little to no overlap with variables in other studies. As a thorough discussion of all these individual factors is not feasible due to space constraints, we present in Table 3 only those that are investigated by two or more studies.

The IPO framework provides two key insights about current literature. First, it suggests that no single theory may adequately explain contribution behaviors, but an amalgamation of several different perspectives might be needed. Second, contribution behaviors are not solely determined by individual factors, but by organizational and technological factors as well (interested readers can refer to Table 3 for salient factors). Despite these insights, previous literature suffers from certain limitations. Specifically, it doesn’t provide much insight about the role of governance mechanisms in explaining contribution behaviors. This is important as governance mechanisms are very prevalent in organizations and they can promote as well as hinder contribution behaviors. This study addresses this gap in the literature by first exploring governance mechanisms, and then investigating their effects on making contributions to organizational repositories.
Theory of planned behavior (and its variants)
Bock et al. (2005)
Chow and Chan (2008)
Bagozzi and Dholakia (2002)
Dholakia et al. (2004)

Expectancy theory
Kalman et al. (2002)

Expectation-confirmation theory
Chen (2007)

<table>
<thead>
<tr>
<th>Category</th>
<th>Independent variable</th>
<th>Impact on Contribution (Study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals factors</td>
<td>Trust</td>
<td>Not supported (Chiu et al. 2006) (Moderator) (Kankanhalli et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>Positive (Chiu et al., 2006) (Moderator) (Kankanhalli et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Reciprocity</td>
<td>Positive (Chiu et al., 2006) Positive (Kankanhalli et al., 2005) Not supported (Wasko and Faraj, 2005)</td>
</tr>
<tr>
<td></td>
<td>Need for reputation</td>
<td>Positive (Kankanhalli et al., 2005) Positive (Wasko and Faraj, 2005)</td>
</tr>
<tr>
<td></td>
<td>Enjoyment in helping others (i.e., altruism)</td>
<td>Positive (Kankanhalli et al., 2005) Positive (Wasko and Faraj, 2005)</td>
</tr>
<tr>
<td></td>
<td>Task interdependence</td>
<td>Positive (Jarvenpaa and Staples, 2000) Positive (Lin and Huang, 2008)</td>
</tr>
<tr>
<td></td>
<td>Personal outcome expectations</td>
<td>Not supported (Chiu et al., 2006) Positive (Lin and Huang, 2008)</td>
</tr>
<tr>
<td></td>
<td>Attitude toward knowledge sharing</td>
<td>Positive (Bock et al., 2005) Positive (Chow and Chan, 2008) Not supported (Bagozzi and Dholakia, 2002)</td>
</tr>
<tr>
<td></td>
<td>Social norm</td>
<td>Positive (Bock et al., 2005) Positive (Chow and Chan, 2008) Not supported (Bagozzi and Dholakia, 2002)</td>
</tr>
<tr>
<td></td>
<td>Social identity</td>
<td>Positive (Dholakia et al., 2004) Positive (Bagozzi and Dholakia, 2002)</td>
</tr>
<tr>
<td>Organizational factors</td>
<td>Organizational reward</td>
<td>Positive (Kankanhalli et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Information culture</td>
<td>Positive (Jarvenpaa and Staples, 2000)</td>
</tr>
<tr>
<td></td>
<td>Organizational ownership of information</td>
<td>Negative (Jarvenpaa and Staples, 2000) Positive (Constant et al., 1994)</td>
</tr>
<tr>
<td></td>
<td>Organizational climate</td>
<td>Positive (Bock et al., 2005)</td>
</tr>
<tr>
<td>Technological factors</td>
<td>IT infrastructure quality</td>
<td>(Moderator) (Koh et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>KM system characteristics</td>
<td>Positive (Lin and Huang, 2008)</td>
</tr>
<tr>
<td></td>
<td>Web site use satisfaction</td>
<td>Positive (Chen, 2008)</td>
</tr>
</tbody>
</table>

Table 2. Theories used in the literature

Table 3. Most common independent variables investigated in the literature
THEORY AND RESEARCH PROPOSITIONS

In order to investigate our research questions, we first turn our attention to the concept of governance as a mechanism to manage knowledge assets in knowledge repositories. Then, we focus on self-determination theory to study the effects of governance mechanisms on individuals’ contribution behaviors.

Societal Governance

Since the term governance has seen different conceptualizations in the literature (c.f., Kooiman, 1999; Rhodes, 1997), in this paper, we adopt Kooiman and Bavinck’s (2005) definition of governance as “the whole of public as well as private interactions taken to solve societal problems and create societal opportunities” (p.17). According to this definition, governance can be considered “arrangements” that can solve a problem faced by a group of individuals, a collective, a community, or a society (Kooiman, 1999). Two such arrangements (or mechanisms) proposed in the literature are hierarchical control and community-governance (e.g., Bowles and Gintis, 2002; Kooiman, 1999; Streeck and Schmitter, 1985). Hierarchical control represents the classical top-down approach that policy makers (i.e. state) employ to enforce rules and policies on citizens that can presumably provide them with security, equal and predictable treatment, while also allowing efficient mobilization of resources to solve societal problems (Streeck and Schmitter, 1985). This is a coercive strategy, and failure to abide by the rules may result in punishment on the part of citizens.

The second mode of governance is community-governance, where citizens solve problems on their own through autonomous and voluntary actions, instead of relying on the state. Community-governance takes advantage of the information dispersed among citizens, and is less susceptible to moral hazard and adverse selection problems that plague hierarchical control (Bowles and Gintis, 2002). For this reason, community-governance is usually preferred over hierarchical control especially if the context is diverse, complex, and dynamic (Kooiman, 1999), where no single person, group, or organization has the power, authority, knowledge, or resources to solve problems (Bryson and Crosby, 1993). Kooiman (1999) describes three essential components of community-governance: images, instruments, and actions. Images represent the “guiding light” or visions, knowledge, or shared goal that individuals are trying to achieve. Instruments are the tools that enable individuals to enact their images, which can either be “soft” (such as information, peer pressure, bribe, etc.), or “hard” (such as covenants, agreements, etc.). Finally, actions are behaviors that put instruments into effect and thereby help implement images.

Governance of Knowledge Repositories

The concept of governance fits well to the context of KM, because managing knowledge assets in knowledge repositories is indeed a significant organizational problem that can potentially be solved using both hierarchical control and community-governance. For knowledge repositories, hierarchical control corresponds to expert-governance, where experts or supervisors act as referees, and accept or reject contributions to knowledge repositories. From a design perspective, the technology behind refereed repositories is geared toward storing and disseminating knowledge, while relying heavily on experts’ abilities and skills, and their editing/control processes to ensure the quality of information in these repositories.

Alternatively, organizations may employ community-governance, where a community of users acts autonomously and voluntarily to increase the value of knowledge assets in repositories. The technological design of a community-governed repository is different from an expert-governed repository in that the technological features are viewed as instruments to govern content. Three such features are the ability to review, edit, and rate existing content, which allow community-governed repositories not only to store and disseminate knowledge assets, but also accept inputs from the community of users. This in turn increases the quality of a repository by increasing the quality of knowledge assets directly (through editing) and by informing users of the quality of knowledge assets (through reviewing and rating).

One similarity between expert and community governance is that both evaluate contributions whether or not contributors want to hear these evaluations. In the case of expert-governance, evaluations are performed by experts or supervisors, whereas in community-governance they are performed by the community of users. Social psychology literature states that individuals’ reactions to others’ evaluations are a major determinant of their behaviors (Brockner, 1988; Jones, 1973; Sweeney and Wells, 1990). Therefore, in the context of KM, individuals’ contribution behaviors should be a function of their reactions to experts’ or community of users’ evaluations. In order to investigate this claim we draw upon self-determination theory.

Self-determination Theory

Self-determination theory (SDT) argues that motivation is a multidimensional psychological force that gives rise to an action (Deci and Ryan, 1985). It suggests that two basic forms of motivation are intrinsic and extrinsic motivation. Intrinsic
motivation is performing a task because it is interesting and enjoyable. It represents individuals’ desire to “seek out novelty and challenges, to extend and exercise [their] capacities, to explore, and to learn” (Ryan and Deci, 2000, p.70). Although intrinsic motivation can be considered an innate propensity, it is susceptible to being disrupted by external factors if not maintained properly. For instance, feelings of competence and autonomy, or other social-contextual factors such as feedback, communication, and rewards may further reinforce as well as undermine intrinsic motivation.

Extrinsic motivation, on the other hand, is performing a task because of separable outcomes. In this case, performing the task has an instrumental value for the individual such as avoiding sanctions or receiving rewards. Although extrinsic motivation is usually treated as a unidimensional concept, there are different types of extrinsic motivation contingent upon the degree to which individuals assimilate external incentives (referred to as internalization and integration; Deci and Ryan, 1985). The internalization and integration process leads to four different extrinsic motivations: (1) external regulation, which is performing a behavior to satisfy a need or reward contingency; (2) introjection, which is performing a behavior to increase or maintain self-esteem; (3) identification, which is performing a behavior because of its personal importance to the individual; and (4) integration, which is performing a behavior due to a complete assimilation of the reward contingency.

Deci and Ryan (1985) state that this taxonomy is not a developmental continuum; and individuals don’t necessarily go through phases of motivations in an orderly fashion. However, individuals can be motivated differently at different points in time, and their motivations depend on the extent to which they internalize external regulations.

Research Model

We chose SDT as the overarching theoretical framework for our research model. Although it is possible to use other theoretical frameworks, our selection of SDT is prompted by the fact that evaluations provided by governance mechanisms have motivational as well as behavioral implications. In addition to SDT, we adopt Campbell and Pritchard’s (1976) approach in explaining behaviors, where not only motivation but also individuals’ cognitive capital (i.e., knowledge, skills, and abilities) determine their behaviors. The proposed research model is presented in Figure 1.

According to our model, individuals make contributions to knowledge repositories because of their intrinsic motivation, which is operationalized using altruism in the literature. Altruism induces contribution behaviors, because individuals derive satisfaction from helping others (Ba et al., 2001; Constant, Kiesler and Sproull, 1994; Kankanhalli et al., 2005; Wasko and Faraj, 2005). In fact, empirical findings support this argument as altruism has been found to be positively related to contribution behaviors (Kankanhalli et al., 2005; Wasko and Faraj, 2005). Therefore, altruistic individuals are more likely to

![Figure 1. Research Model](image-url)
make contributions to knowledge repositories regardless of the type of governance mechanism employed. This leads us to propose:

P1: Altruism is positively related to making contributions to both expert-governed and community-governed repositories.

Individuals make contributions to knowledge repositories because of extrinsic motivation as well. There are at least three types of extrinsic motivation in the context of KM. The first one is external regulation, which is performing a task due to reward contingencies. External regulation is operationalized using **organizational rewards** since individuals can be motivated to make contributions due to salary increases, career advancement, bonuses, job security, or other organizational benefits (Ba et al., 2001; Davenport and Prusak, 1998; Kankanhalli et al., 2005). Current literature supports this argument by reporting a positive relationship between rewards and contribution behaviors (Kankanhalli et al., 2005). Therefore, we propose:

P2: Organizational rewards are positively related to making contributions to both expert-governed and community-governed repositories.

The second extrinsic motivation is introjection, which is performing a task to increase or maintain self-esteem. Introjection is operationalized using **need for reputation** as individuals make contributions to repositories in order to gain respect from their peers and thus increase their self-esteem (Ba et al., 2001; Constant et al., 1994; Kankanhalli et al., 2005; Wasko and Faraj, 2005). Although the impact of reputation on contribution behaviors received mixed support in the literature (supported by Wasko and Faraj, 2005; not supported by Kankanhalli et al., 2005), it is suggested that the desire to build reputation induces individuals to make more contributions to repositories. Therefore, we propose:

P3: Need for reputation is positively related to making contributions to both expert-governed and community-governed repositories.

The third extrinsic motivation is identification, where individuals identify themselves with the behavior, personally endorse it, and perform the behavior because of its importance to the individual. We operationalize identification using **reuse value** of contributions, which is the future value of a contribution to the immediate contributor. Reuse value is a salient extrinsic motivation as it provides benefits to the contributor in terms of keeping track of things, recalling reasons for decisions, or improving future performances (Markus, 2001). Therefore, we suggest that reuse value of contributions motivates individuals to make contributions to repositories. This leads us to propose:

P4: Reuse value is positively related to making contributions to both expert-governed and community-governed repositories.

As discussed earlier, intrinsic motivation is susceptible to being disrupted by external factors, particularly by extrinsic motivation. Current literature reports that intrinsic motivation is undermined in the existence of extrinsic motivation (c.f., Deci, Koestner and Ryan, 1999). Therefore, in the context of KM, organizational rewards, need for reputation, and reuse value are expected to suppress contributions due to altruism. This leads us to propose:

P5\[a, b, c\]: \{Organizational rewards, need for reputation, reuse value\} reduces the impact of altruism on making contributions to both expert-governed and community-governed repositories.

Note that propositions P1-P5 are not new and have already been suggested in the current literature. However, not examined is the role of governance mechanisms in explaining contribution behaviors. By their nature, both governance mechanisms evaluate organizational members’ contributions to knowledge repositories. While the evaluations are provided by experts or supervisors in expert-governance, they are provided by the user community through the three governance instruments (i.e., reviewing, editing, and rating) in community-governance. Research on social psychology suggests that others’ evaluations of one’s behavior determine the focal individual’s future behaviors such that favorable evaluations reinforce future behaviors, while unfavorable evaluations undermine them (Brockner, 1988). Therefore, we propose:

P6a: Experts’ favorable evaluations of prior contributions lead users to make more contributions to expert-governed repositories.

P6b: User community’s favorable evaluations of prior contributions through reviews, edits, and ratings lead users to make more contributions to community-governed repositories.

We also suggest that evaluations provided by governance mechanisms moderate the relationship between intrinsic motivation and behaviors. The rationale for this argument is rooted in the fact that intrinsic motivation is disrupted by external factors, one of which is feedback (i.e., evaluations) provided by others (Deci and Ryan, 1985). According to SDT, favorable
feedback strengthens, while unfavorable feedback weakens intrinsic motivation. Consequently, positive evaluations provided by governance mechanisms will reinforce, while negative evaluations will undermine altruistic contributions. Therefore, we propose:

P7a: Experts’ evaluations of prior contributions positively moderate the relationship between altruism and making contributions to expert-governed repositories.

P7b: User community’s evaluations of prior contributions through reviews, edits, and ratings positively moderate the relationship between altruism and making contributions to community-governed repositories.

Evaluations provided by governance mechanisms also moderate the impact of extrinsic motivation, particularly the impact of need for reputation. It has been suggested that individuals have an innate propensity to maintain a high level of self-esteem (Brockner, 1988; Jones, 1973; Leary, Tambor, Terdal and Downs, 1995). Researchers argue that individuals with low self-esteem exhibit more aversive behaviors if they are evaluated unfavorably by others. Since self-esteem determines individuals’ need for reputation, unfavorable evaluations provided by governance mechanisms can further inhibit contributions of individuals’ with high need for reputation. Therefore we propose:

P8a: When experts’ evaluations of prior contributions are unfavorable, users with high need for reputation make lesser contributions to expert-governed repositories compared to users with low need for reputation.

P8b: When user community’s evaluations of prior contributions are unfavorable, users with high need for reputation make lesser contributions to community-governed repositories compared to users with low need for reputation.

Campbell and Pritchard (1976) state that individuals’ behaviors are determined not only by intrinsic and extrinsic motivations, but by their cognitive capital (i.e., knowledge, skills, and abilities) as well. Accordingly, individuals with high cognitive capital make more contributions to repositories than those with low cognitive capital. Therefore we propose:

P9: Users’ cognitive capital is positively related to making contributions to both expert-governed and community-governed repositories.

Finally, though not depicted in the research model, we suggest that individuals are more likely to make contributions to expert-governed repositories than community-governed repositories. This is because individuals, by their nature, seek situations that boost their self-esteem, and avoid situations or actions that lower their self-esteem. In expert-governance, individuals’ self-esteem can be threatened if they think that experts or supervisors may perceive their contribution as incompetent or rate their performance poorly. This, in turn, can prevent one from making contributions to expert-governed repositories. However, the threats are more severe in community-governance as the entire community of users (as opposed to a handful of experts) can perceive the contributor as incompetent. This time, one’s self-esteem in the eyes of the entire community of users is on the line. Therefore, individuals can be less willing to make contributions to community-governed repositories as being perceived as incompetent by the entire community of peers is more damaging to self-esteem than being perceived as incompetent by only a few experts. This leads us to propose:

P10: Users are less likely to make contributions to community-governed repositories than expert-governed repositories.

DISCUSSION

The goal of this paper was to investigate the impact of two governance mechanisms on knowledge contribution to organizational knowledge repositories. The research questions explored were: what is the impact of (1) expert-governance and (2) community-governance on knowledge contribution to organizational knowledge repositories? We tried to answer these research questions by drawing upon self-determination theory. Regarding both research questions, we suggested that governance mechanisms provide evaluations of contributions, and favorable evaluations foster whereas unfavorable evaluations hinder contribution behaviors. We also suggested that evaluations provided by both governance mechanisms moderate the impacts of intrinsic and extrinsic motivation on contribution behaviors. One notable difference between the two governance mechanisms is that expert-governed repositories are more likely to elicit contributions than community-governed repositories. This is because community of users’ unfavorable evaluations are more damaging to self-esteem than experts’ unfavorable evaluations.

This paper has theoretical and practical implications. From a theoretical perspective, we further our knowledge of the drivers of contribution behaviors by suggesting that evaluations provided by governance mechanisms can be salient in predicting
whether users will make contributions or not. This can increase explanatory power of current theoretical frameworks and help reconcile inconsistent findings in the literature.

From a practical perspective, the arguments presented in this paper are important for organizations which currently, or are planning to, use one of the governance mechanisms to manage their knowledge assets. Inadequate understanding of the impacts of these mechanisms can severely undermine knowledge contributions in organizations and the success of KM initiatives. Practitioners can use the suggestions presented in this study to choose the right governance mechanism for their organizations, or manipulate evaluations provided to contributors in order to foster knowledge contributions.

REFERENCES

