12-31-1993

CADastral Information System (CADIS): A land Administration Information System

N. Wang
Control Data Taiwan

Hsi Chang
National Sun Yat-Sen University

Follow this and additional works at: http://aisel.aisnet.org/pacis1993

Recommended Citation
http://aisel.aisnet.org/pacis1993/18

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 1993 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
LAND ADMINISTRATION IN TAIWAN

The government in Taiwan has been consistently implementing the following objectives for its land administration affairs: 1) equalization of land ownership; 2) upholding the results of farmland reform; 3) management of land and construction; 4) effective use of urban land; 5) land acquisition for public uses; and 6) redrawing of cadastral maps. The Taiwan Land Administration Office offers three types of services to its citizens: 1) land recordation; 2) land surveying and measuring; and 3) land valuation. Land recordation is designed to record information of land conveyances and land valuation is to record information of land transactions.

Land Recordation

Three types of legal information are required to be managed and maintained for land recordation services in Taiwan: 1) the legal description of the parcel; 2) the legal ownership of the parcel; and 3) other legal rights concerning the parcel. A typical land recordation procedure involves three processes: 1) examination; 2) registration; 3) verification and recordation.

Land Valuation

A new owner must register asset value information of a newly purchased property once the transaction is completed. The land valuation procedure involves two processes: 1) land value registration; and 2) land value verification and recordation.

CADIS

The hardware platform of the CADIS consists of CDC Cyber and CDC 4000 series computers, as well as peripheral equipment, main disk drives, terminals, laser printers, and image scanners. The software platform of the CADIS can be either UNIX or MS/DOS environment and the ORACLE database management system (DMS) which manages and integrates various land administrative information. By using the DMS as the core, a star-shape backup network system can then be designed to form a digital data exchange system.

The CADIS consists of three modules: 1) cadastre operation system; 2) land value operation system; and 3) file merger operation system. The system architecture of the CADIS is shown on figure 1.

Cadastre Operation System

Cadastre operation refers to the examination of submitted land record documents, registration, verification and certification, and enquiry of individual property rights.

When an applicant requests for cadastre registration, the cadastre operation system (COS) immediately retrieves the relevant information that is necessary for carrying out various types of verification and evaluation procedures. COS selects an appropriate registration classification which matches the registration type specified by the user, and then proceeds to initiate registration, verification, and registration processes.

Documents such as land and building cadastral registers, ownership deeds, certificates of rights, and various types of reports, can be directed to a laser printer upon requests. COS allows applicants freely to view cadastral data through an on-line interactive interface. Land and building composite data, house number indices, original land values, and other important information are, therefore, open to the public without placing additional workload on the office workers.
Land Value Operation System

The land value operation refers to the process of assessing the land value. The land value operation system (LVOS) consists of five modules: 1) land value registration; 2) total land value verification and post-correction verification; 3) land value inquiries; 4) land value update indices verification; and 5) report and certificate generation.

File Merger Operation System

Because of voluminous cadastral and land value information must be produced, it is, inevitably, that a number of data entry subcontractors are required. The evaluation, conversion, and verification of these outsourcing data are, therefore, vital to a land information management system.

The file merging operation system (FMOS) provides the integration function of cadastral and land value data, data exchange function to the non-CADIS platforms, and various statistical functions to assemble information for decision makers.

Other Modules

In addition to the three modules, the CDT also offers a desktop Land Administration Information System, a Land Value Directory, and a Digitized Cadastral Survey and Land Measurement System. All these modules can be integrated to the main core of the CADIS depending upon user requirements.

EVALUATION

The CADIS has clearly demonstrated that it improves the quality of services to the public, the speed of processes, productivity of the office workers, and data sharing between different government offices or agencies.

Quality of Services

Applicants are freely to inquiry information at their finger tips for which was not available to them before or which would take hours to compile. When inquiring information, they do not have to wait in lines, fill out applications, and wait for another few hours, sometimes even days, to receive a simple answer.

Information contained in each application must be reviewed and released by clerks at three different stops. Each clerk at each stop shares different portion of the responsibility to maintain the principle of check and balance. Data entry occurs only once during the whole process. Certificates are printed automatically through laser printers. Human errors are, therefore, eliminated to the least extent.

Speed of Processes

On average, there is about 50% of time saved using the CADIS versus the manual operation (see table 1). Most of the workload occurs at the verification and recording process is to make sure all the jobs done for an application is legal and accurate. Therefore, most of actual work hours occur at this process has little to do with automation. For the other two modules, time saved by using the CADIS is tremendously larger (about 60%).

In general, the more complex or computable the processes, the more time can be saved for such processes if they are automated. The time saved as shown in table 1 exceeds the time which must be spent for finding relevant information in order to process an application; particularly, in a situation that a clerk must composite several items of information from different sources.

Productivity

Time can be a factor for measuring productivity, so is profit or number of completed jobs. It is, however, very difficult to quantify productivity using intangible measurements, such as the inner side of employees, good-will, or atmosphere of work places. For public services, time and number of completed jobs are properly the two most frequently used measurements for estimating productivity. With these two indicators, the CADIS have certainly improved the productivity of workers at the land administration office.

Data Sharing

Geomatics is more and more an acceptable term for those who need to see relationships and make decisions based on geography. It is properly about 80 per cent of decisions made by central and local government involve a spatial component, either directly or by implication. Therefore, data sharing is a very important subject in the design of public geographic information systems.

Currently, CADIS is capable of exchanging data with other CADIS; however, it is necessary to build interfaces for importing and exporting data between CADIS and non-CADIS systems.

DISCUSSION

CADIS is a system that automates land recordation and valuation processes. However, it deals with only cadastral information, i.e. legal information or the textual part of the cartographic information. Currently, a geographic component is incorporated into the CADIS to store and manage planimetric information (raster and vector data sets) of the land administration information system.

Demands for geomatics applications have dramatically increased on a yearly basis since geographic information systems were introduced to Taiwan market places two years ago. There are a number of problems yet to be resolved in Taiwanese geomatics market. One such problem is the lack of standards.

Establishing a standard (or, in fact, should be, a set of standards) is usually a very difficult and evolving process. Most of developed countries has been establishing standards for geographic information systems used in their countries. These standards continue to evolve over time. Without standards, there will be disasters for all users several years from now if we review the history of hardware and software problems. It is unfortunately that there is no methodology and expertise to coordinate the standards development activities in Taiwan geomatics community. The CDT is committed to participate and be fully cooperated in the standards development process in Taiwan and contribute her resources to the establishment of geomatics standards in Taiwan.
Table 1: Comparison of actual utilization and manual and computerized operations.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Time (s)</th>
<th>% of Total</th>
<th>% of Manual</th>
<th>% of Computerized</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer of ownership</td>
<td>20</td>
<td>70%</td>
<td>50%</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>Loan repurchase</td>
<td>75</td>
<td>20%</td>
<td>50%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>File and document retrieval</td>
<td>25</td>
<td>25%</td>
<td>20%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Lost dealing</td>
<td>10</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Replacement</td>
<td>15</td>
<td>20%</td>
<td>20%</td>
<td>30%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 1: CADIS System Architectures.