
Association for Information Systems
AIS Electronic Library (AISeL)

ACIS 2007 Proceedings Australasian (ACIS)

2007

Software Development Methodologies, Agile
Development and Usability Engineering
David Parsons
Massey University,Auckland, d.p.parsons@massey.ac.nz

Ramesh Lal
Massey University,Auckland, r.lal@massey.ac.nz

Hokyoung Ryu
Massey University,Auckland, h.ryu}@massey.ac.nz

Manfred Lange
FirstData Corporation,Auckland, manfred.lange@peace.com

Follow this and additional works at: http://aisel.aisnet.org/acis2007

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ACIS 2007
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Parsons, David; Lal, Ramesh; Ryu, Hokyoung; and Lange, Manfred, "Software Development Methodologies, Agile Development and
Usability Engineering" (2007). ACIS 2007 Proceedings. 32.
http://aisel.aisnet.org/acis2007/32

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Facis2007%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007?utm_source=aisel.aisnet.org%2Facis2007%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis?utm_source=aisel.aisnet.org%2Facis2007%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007?utm_source=aisel.aisnet.org%2Facis2007%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007/32?utm_source=aisel.aisnet.org%2Facis2007%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

Software Development Methodologies, Agile Development and
Usability Engineering

David Parsons, Ramesh Lal and Hokyoung Ryu
Institute of Information and Mathematical Sciences

Massey University
Auckland, New Zealand

Email: {d.p.parsons, r.lal,h.ryu}@massey.ac.nz

Manfred Lange
FirstData Corporation

Auckland, New Zealand
Email: manfred.lange@peace.com

Abstract
This paper examines the relationship between the practices of agile software development and usability
engineering, and examines how these practices may be integrated within a single methodology. As agile
methods have become increasingly popular, they have begun to replace structured approaches to software
engineering. Usability engineering has historically tended to follow a development approach that is similar to
traditional software engineering, rendering it apparently incompatible with agile methods. The focus of this
paper is an analysis of the relationship between agile practices, on the one hand, and current practices of
usability engineering on the other. We provide an experience report from an organisation where usability
engineering has been integrated into an agile software development method. From this context we identify areas
of compatibility and also areas of conflict, and suggest some strategies for agile development teams to
incorporate key practices from usability engineering, while at the same time suggesting that usability engineers
should embrace relevant agile techniques.

Keywords
Agile methods, usability engineering, software development

Introduction
In this paper we explore how agile software development methods (Fowler 2003) might be integrated with the
usability engineering lifecycle (Mayhew 1999). We begin by comparing the core practices of both agile methods
and usability engineering approaches. We then illustrate how both agile and usability engineering approaches
may be integrated using a descriptive experience report. We conclude by discussing how our experience report
may suggest strategies for agile development teams to ensure that usability is integrated into their own design
processes.

Agile Methods
Past studies suggest that there is no single factor that contributes to failing to deliver a useful information system
(Lyytinen 1987; Delone & McLean 1992; Jiang, Klein & Balloun 1998.) However, the main factors that
negatively impact software development are related to the limitations and shortcomings of people, whether
owners, developers or users (Ewusi-Mensah 1997; Charette 2005). Therefore a software development process
should focus on managing interactions rather than technology; the soft skills of communication, collaboration
and team work amongst the people involved in software development (Highsmith 2002). Modern software
development has evolved from the mainframe world (centralised), through the open systems movement
(decentralised), and into commodity systems (open source, self-organisation), while Business Process
Management (formerly ‘reengineering’) tries to evolve companies into ‘agile enterprises’. Thus there are two
forces, technical and business, that require software development to be increasingly flexible and dynamic.

As a response to this changing environment, the mid 1990s saw the emergence of a new set of informal analysis
and design approaches known as lightweight methods, later renamed agile methods and described by The
Manifesto for Agile Software Development (Fowler 2003). Agile methods, by emphasising incrementally
creating the software itself in close collaboration with the customer, are seen as an alternative to the more
traditional emphasis on substantial planning, modelling, and artefacts. The Agile Manifesto states the following:

172

mailto:manfred.lange@peace.com

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

“we are uncovering better ways of developing software by doing it and helping others to do it. Through this
work we have come to value:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more” (Highsmith 2002 pp.
xvii).

Individuals and Interactions
A member of an agile team must attain and develop multiple technical skills in order to become a generalist
rather than a specialist, though in practice we will still find that every team member has a strength (or
preference) in some area, and that may be of benefit. Furthermore, if a particularly difficult problem arises, for
example requiring specialist support with a particular software tool, external experts or support contract with
vendors or service providers can be used. When an agile team is assembled for a project it does not require all
the individuals in the team to have a very high level of technical skill or even similar levels and kinds of skill. It
is expected that individuals will learn and master different technical skills by interacting with other team
members when developing code, for example by co-location, pair programming and regular reflection
workshops.

Working Software
Agilists firmly believe that it is “working software over comprehensive documentation” that shows the progress
of a software development project. Having working software throughout a project means that it can be used for
conferences, presales, or other customer related demonstrations. Nothing convinces more than running software,
which demonstrates the trust that the company has in the quality of its product. No other artefacts can constitute
this value (Highsmith 2002).

It is the incremental and iterative approach that enables agilists to deliver working software frequently and
regularly for its customers. The shorter the iteration, the easier it is to deliver working software (Koch 2005).
This approach has been complementary to a shift in the nature of software architectures away from large
monolithic systems towards systems built from small software components, for example Service Oriented
Architectures. Such systems enable smaller teams to work independently while collaborating on the common
interfaces. Larger tightly coupled systems require a greater effort to coordinate the work across a larger team. In
this way we can see that software architecture and methodology can interact and enable each other.

Customer Collaboration
An important premise of agile methods is that the exact requirements of the software product cannot be
determined in advance, which is not the case in traditional software engineering approaches. All contracts
include a section on ‘change management’, since the usual expectation is that the requirements will change
during execution of the project. Therefore, the contract of an agile project negotiated now may not be applicable
in future. For this reason agilists discount contract negotiation and emphasize collaboration among the
stakeholders. Agilists believe that collaboration enables software to be developed quickly and delivered on a
regular basis to the customers, helps to make decisions based on consensus, and assists learning and knowledge
sharing among team members for improvement and quality purposes.

Responding to Change
Meticulously following a plan in an environment where business requirements change frequently will lead to
implementation of an obsolete application. Therefore no software development project can be completely
planned from the beginning. While agilists accept that minimal planning is important, they regard deviating
from the plan as a result of new information as normal practice. The approach is to plan for short periods of time
and plan often. An understanding of roles and responsibilities is also important in this planning cycle. Put
simply: Customers (or customer proxies) are responsible for what gets implemented, e.g. features. The
engineering team decide how things get implemented. This is not to say, however, that the conversation between
them may not include these topics, for example a product manager may suggest the use of a specific technology.

Usability Engineering
According to Karat and Dayton (1995), “In most cases of the design and development of commercial software,
usability is not dealt with at the same level as other aspects of software engineering.” In contrast, usability

173

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

engineering does provide structured methods for achieving usability in the system development process, along
with several basic disciplines including cognitive psychology, experimental psychology, ethnography and
software engineering (Mayhew 1999). The usability engineering approach generally consists of several
procedural phases, including requirements analysis, design, testing, development and installation. Much of this
sequencing of phases is iterative should include every aspect of understanding the user and the tasks, contexts,
and environment in which the application will be used, as suggested by user-centred design approaches (Sharp et
al. 2007).

An essential feature of software development is that it is all about understanding how people use software in
practice, and creating a mechanism to embody this descriptive aspect. Methodological approaches to usability
engineering have been widely based on Human-Computer Interaction (HCI) literature. For example, an early
reference to a usability engineering methodology was offered by Gould and Lewis (1985), who describe three
major steps including eliciting user’s tasks, testing, and iterative design. Since this pioneering article, others
have added general frameworks for usability engineering. For instance, Button and Dourish (1996) describe how
usability engineering has been evolving via three pivotal influences on software development; (i) adding
cognitive scientists to design teams to provide psychological input on design; (ii) inserting usability enginnering
methods and techniques with specific, written work documentation into the existing development process; (iii)
redesigning the whole development process around usability engineering expertise, methods, and techniques.

Limitations of the Usability Engineering Model
From the previous description of usability engineering approaches, we can see that it closely resembles the
traditional software engineering approach in its formality and insistence on up-front analysis and design
(Vredenburg et al 2002). However the analysis of available literature on software development methodologies
suggests that many of these have failed to incorporate the lessons of HCI research. For example the Capability
Maturity Model Integration (Software Engineering Institute 2004), which assumes that good software
development processes will lead to the development of usable software without the inclusion of any usability
techniques or tools in the software engineering process.

Even if usability engineering is integrated into a software engineering approach, the usability aspects of that
system will still suffer from the same problems as the methodology into which it is integrated, because of a lack
of flexibility in requirements and also the prescriptive roles that it imposes. In a traditional software
development environment we find architects, developers, testers and various other narrow roles, and the role of
the user interface (UI) expert is cast in this traditional mould. However, from the agile perspective there are no
distinct roles, rather different activities within the same role. One consequence of merging roles may be a
significant reduction in specialist roles such as tester, architect and, of course, usability expert. Merging of roles
also leads to a more democratic structure. For example the architect’s role may be more of a
consulting/coaching/mentoring model instead of imposing/mandating a specific architecture or design, giving
more weight to the role of the software developers. The same would be true of usability experts.

Integrating Agile Methods and HCI concepts
If traditional software engineering methods have not always integrated usability engineering, the same may also
be said for agile methods. Any use of usability engineering, or defining how much effort is put in to identify and
fix any likely usability problems during an iteration, is not explicitly defined by agile approaches. In agile
methods the requirements are stated as user stories or features, but it is not explicit which agile process would
ensure the usability of a story or feature that would be implemented as a function.

The agile approach values delivery of something useful to the customer, who plays a vital role in identification,
capture, and prioritizing of systems requirements. However, the individual who is the customer and is part of an
agile development team may not actually be the real end user of the application being developed. Agile methods
claim that the customer is in control throughout the development project, since the customer decides the
requirement priorities for each iteration. However, in many agile projects the customer is a representative of the
actual users, the sponsors of the project, and the management. The customer acts as a coordinator between them
and the developers to provide the required business domain information to the developers, hence the end users
do not take a direct part in software development. Worse, geographical or financial limitations may mean that a
software development team member who may be a quality assurance person, an agile coach, a product manager,
a software engineer or a marketing analyst may assume the role of ‘customer’. Actual users may be involved by
participating in review meetings or by giving them access to a prototype system, but the aspect of usability
engineering is not necessarily taken into account. The major challenge, then, of an agile approach is how to
identify the requirements of a system as accurately as possible from a customer who is not the actual end user
and who will also lack the in-depth business knowledge that the actual users have. In this type of arrangement
there is a possibility that accurate information is not being transferred between the developers and the actual
users due to different interpretations of the information or the situation by the customer.

174

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

The agile culture of “minimal” design is another reason why agilists may see the usability engineering approach
as being in direct conflict in the way they go about developing software. For example, there may be a
requirement for an interface for entering an address that may need a field for the country. Initially this might be
implemented using a simple text entry field. That might be completely sufficient for the early iterations of the
screen. Later this would probably be replaced with a drop-down list. A further implementation might actually
provide the user with a clickable map of the world. Alternatively, maybe entering an address is as easy as
entering a Google Maps link. Some cell phones have GPS capabilities so sending a text message might enter the
current address in a mobile UI, e.g. for calling a taxi. This simple example illustrates several different ways that
a UI might be built, each being represented in a different increment. In contrast, usability engineering requires
various upfront modelling and design alternatives before a best design is selected for implementation. It may
also require building prototypes to convince the real users. The design, modelling, and prototyping are time
consuming activities, which go through number of iterations based on feedback from the real users. While
usability engineering identifies these as important artefacts which will help to develop a usable system, agilists
believe that these artefacts do not deliver any value to the customer. With the agile approach the rule is to
deliver a piece of working software at the end of each iteration period, so the real focus is on development and
testing of code, and other activities are ignored as much as possible, including usability engineering activities
such creating various designs, models and prototypes. The merging of roles in agile methods is also problematic,
since the usability engineering approach assumes that specialised skills in user interface design are required to
deliver a usable system. Depending on the emphasis placed on usability engineering by the customer, the
company, and/or the engineering team, software developers in an agile setup may not necessarily pay attention
to usability practices.

While the above issues show that agile methods have not explicitly integrated HCI concepts in their
development processes, there are some studies that describe experiences of integrating HCI practices with an
agile approach (Rittenbruch et al 2002; Hansson, Dittrich & Randall 2004). There are several similar approaches
and processes between HCI and agile methods, in particular eXtreme Programming (XP) (Sharp, Robinson &
Segal 2004), and similarities between agile methods and a user-participatory design approach, suggesting we can
combine the culture, education, techniques and tools of HCI and agile methods to design usable software (Sharp
et al 2006). The participatory and iterative approach of usability engineering is similar to the agile approach,
where iterative development is a critical process for delivering software quickly and regularly to the customer,
and the collaborative aspects of agile methods integrate well with user-participatory design practices (Bodker
2002). Therefore there should be a common core of compatibility that it may be possible develop. It may also be
the case that each approach can benefit from the other. According to Sharp et al. (2006), agile methods lack
guidance on requirements elicitation, user interaction, and user interface and they point out that an agile
customer equipped with a user-participatory design approach should be able to more comfortably guide the agile
development process. Bellotti et al (2002) suggest that a failed project based on user centred design was
followed by a successful attempt using XP. However one might draw different conclusions from their paper.
First, that the failure of the usability centred engineering project was mainly due to factors other than the chosen
methodology, while the success of the XP project could in some respects be seen as significant due to its
inclusion of usability engineering practices. Because the developers had begun with a usability engineering
approach, many of their original practices influenced the way they applied XP, such that usability became a key
issue in user testing.

A lesson that we might draw from these studies is that software development processes can be improved by
building on the best practices of different approaches. However we should also be aware that most agile
methods are not just a set of best practices (that is, a bullet list of items), but instead a system of practices that
support/facilitate each other and that mitigate any shortcomings of individual techniques. For example, simple
design requires refactoring, as does minimum upfront design. Refactoring, in turn, requires a test-driven
approach, and so on. The agile approach expands on the individual specialised skills and plan-based effort of
software engineering and life cycle methods to include team effort, combined with the multiple technical skills
of an individual developer. If we wish to integrate aspects of usability engineering into an agile approach, we
need to recognise the points of synergy so that integration is meaningful and beneficial. For example, one
important contribution of integrating a user-participatory design approach into an agile method is that it
mandates a process that involves real users, which most agile methods lack. The user-participatory design
practices of contextual inquiry and design suggestion, design evaluation, and usability testing by real users,
enable software development teams to implement systems that are useful to those actual users. In the next
section we briefly describe an experience report on how aspects of user-participatory design have been
integrated into an agile approach.

Experience Report
UtilSoft is a division of a large business process outsourcing provider located in the US. Part of UtilSoft’s
offerings require the development of software, which usually includes the implementation of a user interface

175

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

(UI) as well. Generally, the development methodology used is a combination of techniques from Scrum and XP,
most of them adapted to the individual needs of each software engineering team. This experience report briefly
describes the major HCI activities that are used as part of development and how they are integrated into the
overall process.

Because some systems are used by customers who have thousands of users, UtilSoft regard user-participatory
design as so important that they have made it an integrated part of their development approach. For instance, an
important metric is the average call handling time of a customer service representative. An improved UI could
perhaps reduce the average call handling time by around 1 second. This may appear to be a small improvement,
given an average call handling time of, say, 300 seconds1, but this can result in savings worth one full time
employee’s annual salary for some customers. This example illustrates the impact of usability from an
operational perspective, but on the sales and marketing side a UI that “sells” is an important factor for the
company’s success, too.

The primary means of ensuring a high HCI quality in the agile software development process is to have a user
interface expert co-located with the development team. One such expert can work with multiple teams. This
cross-team role also has a business and technical background as the artefacts created by different teams need to
be tightly integrated. As a consequence the UI needs to be as consistent as possible across different parts of the
resulting solution. The UI expert’s tasks include the basic layout of the UI, and providing user interface design
guidelines. These include recommendations for how to use particular components for any given type of
interaction (e.g. where and how to use a drop-down list, radio-buttons, panels, etc.), but also behavioural aspects
of the UI, e.g. in which cases is it acceptable to submit the entire page back to the web server, and in which
cases an Ajax (Asynchronous JavaScript and XML) enabled partial page refresh may be the better solution. The
UI expert has also a broad domain knowledge, which allows him/her to always assess UI guidance from a
business perspective. Furthermore, the UI expert works with sales and marketing to ensure consistency with
corporate standards. In some cases local regulations require a deviation from the standard functionality, for
example when an external credit score may only be displayed to users with special permissions.

The software development process is basically controlled through the use of backlogs. Each backlog is owned
by a product manager, who in UtilSoft’s case also serves as the customer proxy. The product manager is
responsible for providing stories for the backlog, and prioritising these stories following estimation by the
engineering team. A story usually describes a scenario of how a user interacts with the system. Typically the
team starts with simple stories first and then incrementally increases the functional footprint by expanding the
initial story with subsequent stories, which cover variations or additional aspects. Very often, stories cover a
‘screen flow’ sequence, and the product manager conceives an initial picture (metaphorically, not literally) of
screens and flows. In collaboration with the engineering team, but also with the UI expert, the product
manager’s understanding evolves into a consistent vision of what is desirable and what is economically
reasonable. Sometimes there are technical reasons why certain design solutions are not possible, although the
engineering team is constantly pushing the envelope of what is achievable.

A third element towards an excellent user experience is the regular assessment by an external consulting
company which specialises in HCI. Such external consultants bring with them experience from working with
other clients and awareness of the latest research in the field. At least once a year, sometimes more often, the
consultant’s experts spend an entire week assessing different parts of the application. The findings usually
contain a list of recommendations and guidelines with regard to further improvements in the user experience.
These guidelines are then reflected back into the stories and also influence how the engineering team
implements the system.

There are also technical aspects with regards to HCI. Most of UtilSoft’s customers require customization of the
user front end. Therefore the systems are developed in a modular and layered way allowing for a highly
customizable solution. On the UI this means the use of Cascading Style Sheets (CSS), which to a large degree
allow the ‘skinning’ of the screens. This represents an example of a per-customer customization. UtilSoft is also
evaluating technologies enabling per-user customization. Among these one might find technologies such as
portlets.

The bottom line is that the combination of close collaboration of co-located product manager, co-located UI
expert, and the engineering team, and of supportive design and technology choices is the ‘secret’ of a successful
integration of HCI activities into an agile development approach. Note that the integrated cross-functional
approach includes not only HCI but also other aspects such as performance and scalability, which are ensured at
the same time using appropriate techniques. It all comes together successfully if the right balance between all the
different objectives is chosen. Table 1 summarises some of the key areas where our experience report indicates

1 300 seconds is just example for illustrative purposes. The actual numbers vary from customer to customer and are typically
company confidential.

176

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

that usability engineering and agile methods may be successfully combined. In some cases we are indicating that
usability engineering needs to adapt to the agile context, for example by using a more iterative approach, and by
testing throughout the project lifecycle. In other cases we are seeing aspects of usability engineering informing
the activities of agile projects, for example by incorporating user scenarios and including UI specialists in the
team.

Table 1: Integrating aspects of usability engineering and agile methods

Usability Engineering Combined Approach Agile Methods

Waterfall type approach, with
analysis, design, implementation
and deployment phases, but
iteration within/across phases

Use Iterative development throughout Iterative approach based on
working software

Documenting user scenarios (or
user profiles and personas) in the
analysis phase

Merge user scenarios (or user profiles
and personas) with stories throughout the
cycle

Requirements encapsulated in user
stories

Specify full design (or partial
prototypes) in design phase

Allow working prototype to emerge Design emerges

Begin design with low fidelity
prototypes including paper
prototypes

Use software for prototypes Prototypes are architectural and
embedded in code

Assemble a multidisciplinary team
to ensure complete expertise

Ensure team includes UI expertise among
other skills

Business people and developers
must work together daily
throughout the project

Use surveys, field studies and
usability testing in the testing phase

Test the UI in the user context regularly,
throughout all phases

Drive development with testing and
integration

Requires usability specialists Use usability specialists across multiple
projects, either in house or by using
external consultants or contractors

Requires generalists

Conclusion
Evolving from more structured approaches to software engineering, agile methods are a flexible approach for
software development where development teams continuously strive for improvement in their processes based
on reflective practice. However, agile methods have not typically incorporated HCI and usability techniques and
tools into their software development processes. Incorporating HCI and usability processes is important, because
usability of the software product is an essential quality. In this paper we have explored the key features of agile
methods and usability engineering, reviewed some examples from the literature where these two aspects of
development have been used together, and provide some data from an experience report where usability
engineering has been integrated into an agile development processes. It is clear that, while the traditional
approach to usability engineering is incompatible with agile methods, it is possible to integrate certain practices
from usability engineering into an agile approach. It is clear that the level of research carried out so far into the
integration of usability engineering and agile methods is relatively limited. However, from both the existing
literature and our own experience report it appears that there are many benefits that can be gained from
combining these approaches. Nevertheless, further field studies are required to identify in greater detail aspects
of best practice and the benefits that can result.

References
Bellotti, V, Ducheneaut, N, Howard, M, Smith, I & Neuwirth, C 200, ‘Innovation in extremis: evolving an

application for the critical work of email and information management’, paper presented to Conference
on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, London, England,
2002.

Bodker, S, Iversen, J 2002, ‘Staging a professional participatory design practice: moving PD beyond the initial
fascination of user involvement’, paper presented to the Second Nordic Conference on Human-Computer
Interaction, pp. 11-18, Aarhus, Denmark

Charette, R 2005, ‘Why Software Fails’, IEEE Spectrum, no. 42, pp. 42-49.

177

18th Australasian Conference on Information Systems Agile Development & Usability Engineering
5-7 Dec 2007, Toowoomba Parsons

Delone, W & McLean, E 1992, ‘Information Systems Success: The Quest For the Dependent Variable’,
Information Systems Research, vol. 3, no. 1, pp. 60-95.

Button, G, Dourish, P 1996, ‘Technomethodology: paradoxes and possibilities’, paper presented to the
Conference on Computer-Human Interaction, pp. 19-26

Ewusi-Mensah, K1997, ‘Critical Issues in Abandoned Information Systems Development Projects’,
Communications of the ACM, vol. 40, no. 9, pp. 74-80.

Fowler, M 2003 The New Methodology, viewed 5 June 2007
<http://www.martinfowler.com/articles/newMethodology.html>.

Gould, J, Lewis, C 1985, ‘Designing for usability: Key principles and what desingers think’, Communications of
the ACM 28 (3), pp. 360-411

Hansson, C, Dittrich, Y & Randall, D 2004, ‘Agile processes enhancing user participants for small providers of
off-the-shelf software’, paper presented to Fifth International Conference on Extreme Programming and
Agile Processes in Software Engineering (XP2004), Garmisch-Partenkirchen, Germany, June 6-10.

Highsmith, J 2002, Agile Software Development Ecosystem, Boston, Addison-Wesley.

Jiang, J, Klein G, & Balloun, J 1998, ‘Perceptions of System Development Failures’, Information and Software
Technology, vol. 39, pp. 933-937.

Karat, J, Dayton, T 1995 ‘Practical education for improving software usability’, paper presented to the
conference on Computer-Human Interaction, pp. 162-169.

Koch, A 2005, Agile Software Development: Evaluating The Methods For Your Organization, Boston, Artech
House.

Lyytinen, K 1987, ‘Different Perspectives on Information Systems: Problems and Solutions’, ACM Computing
Surveys, vol. 19, no. 1, pp. 5-46.

Mayhew, D 1999, The Usability Engineering Lifecycle, Morgan Kaufmann

Rittenbruch, M, McEwan, G, Ward, N, Mansfield, T & Bartenstein, D 2002, ‘Extreme Participation: Moving
Extreme Programming Towards Participatory Design’, paper presented to Seventh Biennial Participatory
Design Conference, Malmo, Sweden, June.

Software Engineering Institute 2007, Capability Maturity Model Integration viewed 5 June 2007
<http://www.sei.cmu.edu/cmmi/>.

Sharp, H, Robinson, H, & Segal, J 2004, ‘eXtreme Programming and User-Centred Design’, paper presented to
18th British HCI Group Annual Conference: HCI2004 Design for Life, Leeds Metropolitan University,
UK.

Sharp, H, Biddle, R, Gray, P, Miller, L & Patton, J 2006, ‘Agile Development: Opportunity or Fad’, paper
presented to Conference on Human Factors in Computing Systems (CHI 2006), pp. 32-35, Montreal,
Canada.

Sharp, H, Rogers, Y, Preece, J 2007 Interaction Design: Beyond Human-Computer Interaction (2nd edition),
Wiley.

Vredenburg, K, Isensee, S, Righi, C 2002, User-Centered Design: An Integrated Approach, Prentice Hall

Copyright
David Parsons, Ramesh Lal, Hokyoung Ryu and Manfred Lange © 2007. The authors assign to ACIS and
educational and non-profit institutions a non-exclusive licence to use this document for personal use and in
courses of instruction provided that the article is used in full and this copyright statement is reproduced. The
authors also grant a non-exclusive licence to ACIS to publish this document in full in the Conference
Proceedings. Those documents may be published on the World Wide Web, CD-ROM, in printed form, and on
mirror sites on the World Wide Web. Any other usage is prohibited without the express permission of the
authors.

178

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	Software Development Methodologies, Agile Development and Usability Engineering
	David Parsons
	Ramesh Lal
	Hokyoung Ryu
	Manfred Lange
	Recommended Citation

	Abstract
	Keywords
	Introduction
	Agile Methods
	Individuals and Interactions
	Working Software
	Customer Collaboration
	Responding to Change
	Usability Engineering
	Limitations of the Usability Engineering Model
	Integrating Agile Methods and HCI concepts
	Experience Report
	Conclusion
	References
	Copyright

