Study on Competitive Strategy of B2C Platform

Yuying Lou
School of Management, Xiamen University, Xiamen, 361005, China, yuli_lyy@outlook.com

Zhenyu Liu
School of Management, Xiamen University, Xiamen, 361005, China

Follow this and additional works at: http://aisel.aisnet.org/whiceb2016

Recommended Citation

http://aisel.aisnet.org/whiceb2016/57

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). It has been accepted for inclusion in WHICEB 2016 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
Study on Competitive Strategy of B2C Platform

Yuying Lou*, Zhenyu Liu
(School of Management, Xiamen University, Xiamen, 361005, China)

Abstract: The article builds a competitive model of the incumbent and later entrant, considering the case of single-homing and multihoming. Results show that the conditions that later entrant platform profits exceed incumbent platform are the same under the case of single homing and multihoming. At the same time, the later entrant should turn to charge rather than subsidizing enterprise when two platforms get an equilibrium. Later entrant platform can focus on improving user's evaluation of one side if it wants to exceed the incumbent in profits. Finally, the case of Tmall and Amazon China in B2C market is discussed.

Keywords: two-sided market, B2C platform, competition strategy

1. INTRODUCTION

Along with the tremendous growth in B2C market, the concentration of market increases constantly. Tmall captures more than half of market and occupies the leading position in domestic B2C market since 2011. However, other B2C platforms, such as Amazon China accounts for a small part of market. Online shopping competition develops consistently, and the question whether Amazon China, as a later entrant representative, can exploit follower advantages and achieve performance breakthrough is the keystone of the study.

Platform competition has been studied extensively, and much of the literature focuses on pricing strategy of single platform, such as strategy of fee structure [1-4] and multihoming [5-7]. Several studies investigate the issues of competitive coexistence between platforms. Shapiro and Varian (1999) [8] explain the causes of winner-take-all in networked market based on network effects, namely, there will be only one winner in the end when two or more companies are competing for a big market with positive feedback. Sun and Tse (2007) [9] discuss the coexistence condition of two competition networks in two-sided market. It is easier to emerge an only winner in a market with single-homing while market with multihoming tends to coexist. Goettler and Gordon (2014) [10] use a dynamic oligopoly model to examine the relationship between competition and product innovation and find an inverted-U relationship between product substitutability and innovation. Innovation benefits increase initially for enterprises. However when the market tends to be a winner-take-one all one, laggards will abandon pursuit of the leader for the reason of few residual profits to fight. Other papers investigate market positioning strategy of later entrants. Bardey and Rochet (2010) [11] take risk factor into account and argue that heterogeneity of patient risk level provides a differentiated positioning opportunity for medical institutions. Medical institutions can successfully enter the market as long as its positioning strategy is reasonable. Based on the study of Bardey and Rochet, Fu (2011) [12] brings risk factor to bank card market and analyzes price strategy of China UnionPay and VISA. Results show that winner-take-all is not necessarily normal in bank card market which share the characteristics of two-sided market. Later entrant will find niche market whenever its market positioning and price structure are reasonable. Kim and Tse (2011) [13] study the strategy of later knowledge-sharing websites and consider the influence of accumulated knowledge, complexity of questions, and price structure of advertising on survivability of a latercomer. Paper shows that the longer the life span of accumulated knowledge, the higher the chance of survival of the latecomer. Eisenmann et al. (2011) [14] consider the barrier to enter for a potential entrant because of network effect, trying to explore the conditions under which envelopment strategies are likely to succeed. Research indicates that platform can envelope incumbent platform and take market share of rivals by

* Corresponding author. Email: yuli_lyy@outlook.com (Yuying Lou)
bundling two platforms function together. Zhu and Iansiti (2011)[15] discuss the competition based on platform quality and installed base between two platforms, which is a later entrant and an incumbent withoutstanding superiority. A dynamic game is developed and results indicate that installed base does not necessarily present barriers to entry. McIntyre and Chintakananda (2014)[16] think that entrepreneurs seeking to enter a market effected by network effects need to solve three major problems before making entry decision. The first one is where is the network effects from in this market? The second is what is the strength of network effects in a given market? The last is whether there a dominant standard that has already locked in the market?

Those studies are mainly aimed at competition between platforms with feature of two-sided markets, while few work for B2C platform competition. Sounlike prior studies, we principally research on the competition strategy of B2C platform. Enterprises and consumers are the two sides in B2C platform. Their asymmetrical status makes B2C platform different from other platforms in two-sided markets. Ma and Liu (2013)[17] compare three B2C platforms revenue by building both static and dynamic pricing models. Findings reveal that revenues of platforms are consequently different because of their price structure. However the study focuses on the effect of price structure. In this paper, an asymmetric duopoly situation is considered to model competition between an entrant and an incumbent platform, where platform 1 is characterized by a larger market. In the cases of single-homing and multihoming, we want to know whether it is possible for later entrant platform to exceed the incumbent in profits. There are no fees for customers in B2C platform, such as Tmall, Jingdong Mall and Amazon China. So we assume that platform charge no fees to consumers. The incumbent charges a fixed fee to enterprises while later entrant subsidizes the enterprises.

2. **THE MODEL**

We assume that there are two platforms in B2C market. Platform 1 is the incumbent and platform 2 is later entrant. \(N_i \) and \(N_s \) are the number of consumers of platform 1 and platform 2, respectively. \(N_i \) and \(N_s \) are the number of enterprises of platform 1 and platform 2. \(V_i \) and \(V_s \) represent the service level of platform 1 and platform 2 \((V_i > 0, i = 1, 2)\). \(\hat{\lambda}_c \) and \(\hat{\lambda}_s \) denote the evaluation coefficient of platform 1 and platform 2 for consumers and enterprises, where \(\hat{\lambda}_c \in [0,1] \). User will not join none platform when \(\hat{\lambda}_c = 0(i = c, s) \). \(\alpha_c \) and \(\alpha_s \) denote the cross network externality coefficient \((\alpha_i > 0, i = c, s)\). \(P_i \) represents that the incumbent charges a fixed fee to the enterprises. \(P_s \) represents that later entrant subsidizes enterprises \((P_s > 0, i = 1, 2)\).

\[
U_{ci} = \alpha_c N_i + \hat{\lambda}_c V_i \quad (1)
\]
\[
U_{cs} = \alpha_s N_s + (1-\hat{\lambda}_s) V_s \quad (2)
\]
\[
U = \alpha_c + \hat{\lambda}_c V_i + (1-\hat{\lambda}_s) V_s \quad (3)
\]

Formula (1), (2), (3) represent the utility when consumers join platform 1, platform 2 and both platforms, respectively, where consumer network effects is denoted by \(\alpha_c N_i \), the perceived service utility of platform 1 for consumer is denoted by \(\hat{\lambda}_c V_i \) and the perceived service utility of platform 2 for consumer is denoted by \((1-\hat{\lambda}_s) V_s\).

\[
U_{ci} = \alpha_c N_i + \hat{\lambda}_c V_i - P_i \quad (4)
\]
\[
U_{cs} = \alpha_s N_s + (1-\hat{\lambda}_s) V_s + P_s \quad (5)
\]
\[
U = \alpha_c + \hat{\lambda}_c V_i + (1-\hat{\lambda}_s) V_s + P_s - P_i \quad (6)
\]

Formula (4), (5), (6) represent the utility when enterprises join platform 1, platform 2 and both platforms, respectively, where enterprise network effects is denoted by \(\alpha_c N_i \), the perceived service utility of platform 1 for enterprises is denoted by \(\hat{\lambda}_c V_i \) and the perceived service utility of platform 2 for enterprise is denoted by \((1-\hat{\lambda}_s) V_s\). A consumer will join platform 1 rather than platform 2 if \(U_{ci} > U_{cs} \) and vice versa. Similarly, an enterprise will join platform 1 rather than platform 2 if \(U_{ci} > U_{cs} \), and vice versa.

2.1 Platform competition in the case of single-homing

User can only choose to join one platform and make sure that utility is always positive, that
is $U_{ij} > 0(i=1, 2)$ and $U_{ij} > 0(i=1, 2)$. We assume that market is completely covered18, so $N_{i1} + N_{i2} = 1$ and $N_{i1} + N_{i2} = 1$ are satisfied. In the case of single-homing, we think of a Hotelling type of model where a mass of enterprises are uniformly distributed on a $(0, 1)$ interval. Let’s suppose that platform 1 is located at 0 and platform 2 is located at 1. It represents a transportation cost proportional to their distance with platform 1 and platform 2. It is used to reflect the degree of difference between platforms and the greater t, the stronger the heterogeneity. Thenet utility function derived from an enterprise located at x of platform 1 and platform 2 can be expressed as following formula (7).

\[
\Phi_{si} = \alpha_{N_{i1}} + \lambda_{i}V_{i} - P_{si} - tx
\]

\[
\Phi_{s2} = \alpha_{N_{i2}} + (1-\lambda_{i})V_{i} + P_{s2} - t(1-x)
\]

The address of indifferenterenterprise is $\bar{x} = \frac{1}{2} + \frac{\alpha_{(N_{i1} - N_{i2})} + \lambda_{i}(V_{i} + V_{s}) - V_{s} - (P_{s1} + P_{s2})}{2t}$, thus

\[
N_{i1} = \frac{1}{2} + \frac{\alpha_{(2N_{i1} - 1)} + \lambda_{i}V_{i} - (1 - \lambda_{i})V_{s}}{2t}
\]

\[
N_{i2} = \frac{1}{2} - \frac{\alpha_{(2N_{i2} - 1)} + \lambda_{i}V_{i} - (1 - \lambda_{i})V_{s}}{2t}
\]

Similarly, we can get:

\[
N_{i1} = \frac{1}{2} + \frac{\alpha_{(2N_{i1} - 1)} + \lambda_{i}V_{i} - (1 - \lambda_{i})V_{s}}{2t}
\]

\[
N_{i2} = \frac{1}{2} - \frac{\alpha_{(2N_{i2} - 1)} + \lambda_{i}V_{i} - (1 - \lambda_{i})V_{s}}{2t}
\]

We can know N_{i1} and $N_{i2}(i=1, 2)$ are cross-correlation from formula (8) and (9). When $N_{i1}, (N_{i2})$ increase, there is a corresponding increase of $N_{i2}, (N_{i1})$. It means, when more users of one side join the platform, it will also attract more users on the other side. This just reflects the positive cross network externalities.

By considering formula (8) and (9), we can get enterprises number of platform 1 and platform 2, respectively.

\[
N_{i1} = \frac{1}{2} + \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - t(P_{s1} + P_{s2})\right]}{2t^2 - 2a_{i}a_{i}}
\]

\[
N_{i2} = \frac{1}{2} - \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - t(P_{s1} + P_{s2})\right]}{2t^2 - 2a_{i}a_{i}}
\]

Thus, profits of platform 1 and platform 2 are:

\[
\Pi_{1} = P_{s1}N_{i1} = P_{s1}\left(\frac{1}{2} + \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - t(P_{s1} + P_{s2})\right]}{2t^2 - 2a_{i}a_{i}}\right)
\]

\[
\Pi_{2} = -P_{s2}N_{i2} = -P_{s2}\left(\frac{1}{2} - \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - t(P_{s1} + P_{s2})\right]}{2t^2 - 2a_{i}a_{i}}\right)
\]

We demand Π_{1} and Π_{2} on P_{s1} and P_{s2}, first order partial derivatives respectively to obtain maximum profits.

\[
\frac{\partial \Pi_{1}}{\partial P_{s1}} = \frac{1}{2} + \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - tP_{s1}\right]}{2t^2 - 2a_{i}a_{i}} - \frac{t}{t^2 - a_{i}a_{i}}P_{s1}
\]

\[
\frac{\partial \Pi_{1}}{\partial P_{s2}} = \frac{1}{2} + \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - tP_{s1}\right]}{2t^2 - 2a_{i}a_{i}} - \frac{t}{t^2 - a_{i}a_{i}}P_{s2}
\]

We can get pricing strategy of two platforms according to the necessary condition of profit maximization.

\[
P_{s1} = \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} + 3(t^2 - a_{i}a_{i})\right]}{3t}
\]

\[
P_{s2} = \frac{(t\lambda_{i} + a_{i}\lambda_{i})V_{i} - \left[(t(1 - \lambda_{i}) + a_{i}(1 - \lambda_{i}))V_{s} - 3(t^2 - a_{i}a_{i})\right]}{3t}
\]
Replacing formula (13) into (10), we can know enterprises of platform 1 and platform 2.

\[N_{ai} = \frac{3(t^2 - 2a, a_i) + (t(a_i + a_i) + a_i(1 - a_i))V_1 - \left[t(1 - a_i) + a_i(1 - a_i)\right]V_2}{6(t^2 - 2a, a_i)} \]
\[N_{az} = \frac{3(t^2 - 2a, a_z) - \left[t(1 - a_z) + a_z(1 - a_z)\right]V_1}{6(t^2 - 2a, a_z)} \]

(14)

Replacing formula (13) and (14) into (11), profits of platform 1 and platform 2 are as follows.

\[\Pi_1 = \frac{3(t^2 - a, a_i) + (t(a_i + a_i) + a_i(1 - a_i))V_1 - \left[t(1 - a_i) + a_i(1 - a_i)\right]V_2}{18(t^2 - a, a_i)} \]
\[\Pi_2 = \frac{3(t^2 - a, a_z) - \left[t(1 - a_z) + a_z(1 - a_z)\right]V_1}{18(t^2 - a, a_z)} \]

(15)

Then, the difference between platform 2 and platform 1 is:

\[\Delta_\pi = \Pi_2 - \Pi_1 = -\frac{2}{3}\left\{a_i(\lambda_i + a_i(1 - a_i)\right\}V_1 - \left[t(1 - a_i) + a_i(1 - a_i)\right]V_2 \} \]

When profits of platform 2 exceeds platform 1, it should satisfy \(\Delta_\pi > 0 \), that is to say, \(\Pi_2 = \frac{3(t^2 - a, a_z) - \left[t(1 - a_z) + a_z(1 - a_z)\right]V_1}{18(t^2 - a, a_z)} \) profits of platform 2 will exceed platform 1.

2.2 Platform competition in the case of multihoming

User can choose to join both two platforms, and according to Hotelling model, we can know:

\[N_{ai} = \frac{1}{t}(a, a_i + a_i V_1 - P_i) \]
\[N_{az} = \frac{1}{t}[a, a_z + (1 - a_z) V_2 + P_z] \]

(16)

Similarly, we can get:

\[N_{ai} = \frac{1}{t}(a, a_i + a_i V_1) \]
\[N_{az} = \frac{1}{t}[a, a_z + (1 - a_z) V_2] \]

(17)

It can be seen from formula (16) and (17), \(N_{ai}, N_{az}, a_i, a_z \) are correlation. When \(N_{ai}, N_{az} \) increase, there is a corresponding increase of \(N_{ai}, N_{az} \). That means when more users of one side join the platform, it will also attract more users on the other side. This just reflects the positive cross network externalities.

By considering formulas (16) and (17), we can get enterprises number of two platforms in the case of multihoming, respectively.

\[N_{ai} = \frac{(a, a_i + a_i) V_1}{t^2 - a_i a_z} - \frac{t}{t^2 - a_i a_z} P_{ai} \]
\[N_{az} = \frac{(a, (1 - a_z) + t(1 - a_z)) V_2}{t^2 - a_i a_z} + \frac{t}{t^2 - a_i a_z} P_{az} \]

(18)

Thus, profits of platform 1 and platform 2 are:

\[\Pi_1 = P_{ai} N_{ai} = P_{ai} \left[\frac{(a, a_i + a_i) V_1}{t^2 - a_i a_z} - \frac{t}{t^2 - a_i a_z} P_{ai}\right] \]
\[\Pi_2 = P_{az} N_{az} = P_{az} \left[\frac{(a, (1 - a_z) + t(1 - a_z)) V_2}{t^2 - a_i a_z} + \frac{t}{t^2 - a_i a_z} P_{az}\right] \]

(19)

We demand \(\Pi_1, \Pi_2, P_{ai}, P_{az} \) first order partial derivatives respectively to obtain maximum profits.
We can get pricing strategy of two platforms, according to the necessary condition of profit maximization.

\[
P_{si} = \frac{a_i\lambda_i + t_i\lambda_i}{2t_i}
\]

\[
P_{sj} = \frac{a_j(1-\lambda_j) + t_j(1-\lambda_j)}{2(t_j - a_j)}
\]

Replacing formula (21) into (18), we can know enterprises number of two platforms, respectively.

\[
N_{si} = \frac{(a_i\lambda_i + t_i\lambda_i)V_i}{2(t_i - a_i)}
\]

\[
N_{sj} = \frac{a_j(1-\lambda_j) + t_j(1-\lambda_j)V_j}{2(t_j - a_j)}
\]

Profits of platform 1 and platform 2 are as follows.

\[
\Pi_i = \frac{(a_i\lambda_i + t_i\lambda_i)^2 V_i^2}{4(t_i - a_i)}
\]

\[
\Pi_j = \frac{a_j(1-\lambda_j) + t_j(1-\lambda_j)^2 V_j^2}{4(t_j - a_j)}
\]

The ratio between platform 2 and platform 1 is

\[
\frac{\Pi_2}{\Pi_1} = \frac{[a_j(1-\lambda_j) + t_j(1-\lambda_j)]^2}{(a_i\lambda_i + t_i\lambda_i)^2}
\]

When profits of platform 2 exceed platform 1, it should satisfy \(\frac{\Pi_2}{\Pi_1} > 1\). After simplifying, we can get \(V_2 < \frac{t_j(1-\lambda_j) + \alpha_j(1-\lambda_j)}{t_i\lambda_i + \alpha_i\lambda_i}\), which means profits of platform 2 will exceed platform 1. This is consistent with the conclusion in the case of single-homing.

3. MODEL ANALYSIS

In this paper, number of enterprises, pricing strategy and profits of two platforms are discussed in the case of single-home and multihoming. Results suggest that the conditions that platform 2 outstrips platform 1 in profits are the same. This indicates that the impact of user’s state of attribution plays a minor role in platform competition.

Conclusion 1: In the case of single-home and multihoming, the conditions that platform 2 outstrips platform 1 in profits are the same.

When profits of platform 2 exceed platform 1, it will satisfy \(\frac{V_2}{V_1} < \frac{t_j(1-\lambda_j) + \alpha_j(1-\lambda_j)}{t_i\lambda_i + \alpha_i\lambda_i}\), now two cases are discussed.

- \(\lambda_i\) and \(\lambda_j\) are symmetric
 - When \(0 < \lambda_i < 1/2, 0 < \lambda_j < 1/2\), \(\frac{t_j(1-\lambda_j) + \alpha_j(1-\lambda_j)}{t_i\lambda_i + \alpha_i\lambda_i} > 1\), the size of \(V_1\) and \(V_2\) can not be ascertained.
 - When \(1/2 < \lambda_i < 1, 1/2 < \lambda_j < 1\), \(\frac{t_j(1-\lambda_j) + \alpha_j(1-\lambda_j)}{t_i\lambda_i + \alpha_i\lambda_i} < 1\), thus, \(V_1 < V_2\).

- \(\lambda_i\) and \(\lambda_j\) are asymmetric
 - When \(0 < \lambda_i < 1/2, 1/2 < \lambda_j < 1\), we can not determine the value of \(\frac{t_j(1-\lambda_j) + \alpha_j(1-\lambda_j)}{t_i\lambda_i + \alpha_i\lambda_i}\), compared with 1, the size of \(V_1\) and \(V_2\) cannot be ascertained. It is the same when \(1/2 < \lambda_i < 1, 0 < \lambda_j < 1/2\). Table 1 is discussion on
different values of λ_c and λ_t.

| Table 1. Discussion on different values of λ_c and λ_t |
|---------------------------------|-----------------|-----------------|
| | $0 < \lambda_c < 1/2$ | $1/2 < \lambda_c < 1$ |
| $0 < \lambda_t < 1/2$ | cannot be determined | cannot be determined |
| $1/2 < \lambda_t < 1$ | cannot be determined | $V_t < V_2$ |

From Table 1, we know that when $1/2 < \lambda_c < 1$, $1/2 < \lambda_t < 1$, the value of $\frac{[\lambda_t(1-\lambda_c) + \alpha_t(1-\lambda_t)]}{\lambda_c + \alpha_t}$ will be less than 1, thus $V_t < V_2$. It means that when the evaluation coefficient of consumers and enterprises are both very high, the service level of platform 2 will be superior to platform 1 if it outstrips platform 1 in profits. When $0 < \lambda_c < 1/2, 0 < \lambda_t < 1/2$ or in the case of λ_c and λ_t are asymmetric, the service level of platform 2 can be higher or lower than platform 1 if the profits of platform 2 exceed platform 1 in profits. So, condition is relatively loose. Platform 2 will obtain much more profits than platform 1 as long as $\frac{V_t}{V_2} < \frac{\lambda_t(1-\lambda_c) + \alpha_t(1-\lambda_t)}{\lambda_c + \alpha_t}$ is satisfied regardless of service level. For platform 2, it will need to pay more effort and cost to improve evaluation to a high level simultaneously, so it can reduce user evaluation of both two sides or focus on improving user experience of one side to get high evaluation. However, it is difficult to survive in the market for platform 2 with low evaluation of both two sides. Therefore, to vie for market and get more profits than platform 1, platform 2 should primarily improve evaluation of one side.

Conclusion 2: to vie for market and get more profits than platform 1, platform 2 should primarily improve evaluation of one side.

From formula (13) and (21) we can see when competition equilibrium exists in the case of single-home and multihoming, it indicates that platform 2 should charge fees to enterprises instead of subsidy under maximization of profit. So in early phase of entry, it is not a permanent measure to subsidize enterprises to get them on board.

Conclusion 3: later entrant should charge fees to enterprises in order to obtain much more profits than the incumbent when competition equilibrium exists.

4. CASE ANALYSIS

Tmall, being the leader of B2C market in China since 2011, comes from Taobao which started from 2003. Large numbers of enterprises and numerous consumers are attracted for its large market share and unexampled advantages in flow. Enterprises of Tmall not only need pay deposit and use cost, but also need pay high advertisement costs to gain platform flow. Amazon is the world’s largest electronic business company. Combined with joyo.com, it began to enter into Chinese market in 2004 and renamed Amazon China in 2011. Different from other B2C platforms in China, such as Tmall, Jingdong Mall, Amazon China adopts “zero investment” pattern without deposit and use cost. Enterprises only need to pay commission and logistics expense. What’s more, there’s no advertising cost. It provides a fair competitive environment for different sellers of the same product to enjoy same opportunity and flow. Meanwhile, Amazon China creates unified promotion and marketing, which provides numerous free services, including page display, mail advertising and personalized recommendation engine. Thanks to simplified marketing process, enterprises can focus on selling all manner of products. Amazon China subsidizes enterprises by offering free services.

However, Amazon China has been in a tepid state since its entry to China. From Figure 1, we can see Tmall ranks first with 441 billion while Amazon China, less than a tenth of Tmall, ranks seventh. Meanwhile, Amazon China is at the bottom of the list with a rate of 42.6% in the top 10 China B2C online retail growth rates of 2013.
Comparing with rapid growth of China B2C platforms, the development of Amazon China appears to be excessively slow. This phenomenon mainly comes from three aspects. Firstly, Amazon China put emphasis on developing infrastructure construction at the beginning, like layout of warehousing logistics and the building of IT system for instance. However, Amazon China made its first ever loss in 2012 because of the impact of high input in logistics and technology. There is no deposit or use cost in Amazon China and enterprises are provided with various promotion service, which also lead to a considerable expenditure. Secondly, it is not in accordance with consumer shopping habits for its monotone website design. Thirdly, there are different kinds of sales promotion in China, such as Double 11 shopping spree of Tmall and “6·18” anniversary sale of Jingdong. They are good ways to attract consumers and receive praise. But, Amazon China is not keen to lower prices to entice customers. Hence, platform evaluation of consumers are generally not high.

Conclusion 1 indicates that user state of attribution is not the key factor in profit competition. Thus, Amazon China will get ahead of Tmall as long as \(\frac{V}{V_1} < \frac{\mu(1-\lambda_1) + \alpha(1-\lambda_2)}{\mu\lambda_1 + \alpha\lambda_2} \). According to conclusion 2, Amazon China should improve its site layout combined with user habits to enhance user experience. In tandem, it is essential to provide more personal service to improve consumer evaluation.

In order to make a profit breakthrough, Amazon China should shrink its spending and reduce the construction of logistics infrastructure investment on the one hand. On the other hand, charging fees to enterprises is needed. It is not a permanent solution to subsidize enterprises to get them on board in initial phase of platform development. This is also consistent with conclusion 3.

5. CONCLUSIONS

In the case of single-home and multihoming, we firstly consider competitive strategy of the incumbent and later entrant, which differ in service level and evaluation. Then the condition of later entrant profit exceeding the incumbent is studied. Finally, the case of Tmall and Amazon China is discussed. The conclusions are as follows:

- In the case of single-home and multihoming, the conditions that platform 2 outstrips platform 1 in profits are the same.
- In order to get more profits than the incumbent, later entrant should substantively improve service level and evaluation of one side in platform.
- Later entrant should charge fees to enterprises in order to obtain much more profits than the incumbent when competition equilibrium exists.

The B2C market of China is developing rapidly, and the duopoly market pattern consist of Tmall and Jingdong is gradually being formed. Other B2C platforms are trying to seek for new market space and enhance its
core competitive advantage by supply chain integration, product development, brand building and service optimization. Burgeoning vertical B2C platforms, such as Vipshop and Jumei are examples of later entrants. Thus, later entrant can still create a better performance as long as its market positioning is appropriate.

REFERENCES

