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ABSTRACT 
Being equipped with a unique high-frequency dataset that enables 
us to precisely identify algorithmic trading (i.e. computer-
generated) activity, we provide strong evidence that algorithmic 
trading does not exceedingly increases volatility, at least not more 
than human traders do. Our empirical analyses cover several 
potential reasons why algorithmic trading could increase 
volatility. For example, we address whether or not algorithmic 
traders follow less diverse trading strategies than humans. 
Moreover, we investigate whether or not algorithmic traders 
withdraw liquidity from the market during periods of high 
volatility. 
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1. INTRODUCTION 
Today, up to 40% of executed trading volume on major exchanges 
includes an algorithmic trader, i.e. a computer, as a trading 
counterparty [6][11]. Moreover, algorithmic trading even accounts 
for 50% of electronic message traffic [11]. While algorithmic 
trading, in terms of market share, has been virtually non-existent a 
decade ago, the electronification of trading systems has 
accelerated the double-digit growth since then. With the 
emergence of algorithmic trading, the interest in the topic by both 
the public and researchers has significantly grown. The media, 
however, has primarily satisfied the increased public interest with 
rather one-sided stories: While the Wall Street Journal 
concentrates on “the dark side of algorithms” (May 7th 2010), the 
New York Times exemplarily highlights reputed disparities by 
“reward[ed] bad actors” (August 3rd 2009). Beyond that the 
Financial Times asserts that “algorithmic trades heighten 

volatility” (December 4th 2008) or, to be more precise, 
“algorithmic trades produce snowball effects on volatility” 
(December 5th 2008). Researchers though were – until recently – 
neither able to confirm nor to defeat the propositions made by the 
media. Being largely hampered by limited data availability, 
academics have not been able to conduct rigorous research. In 
particular the relation between algorithmic trading activity and 
volatility has not yet been sufficiently investigated. On financial 
markets, stock prices should ideally reflect the underlying real 
(fundamental) value of listed companies. Thus, high levels of 
stock price volatility indicate large uncertainty about the value of 
respective companies. While uncertainty may open up trading 
opportunities for speculators, most market participants perceive 
volatility as rather iniquitous. This is particularly true whenever 
volatility levels do not reflect uncertainty about company values, 
i.e. expected future cash flows, because a certain group of 
investors / traders systematically impairs volatility levels. 

Rigorous insights into the behavior of algorithmic traders, i.e. 
computers, on financial markets are essential for – at least – the 
following reasons: 

First, the constant evolution to fully automated securities trading 
[15] calls for respective adjustments to electronic market design to 
secure both market integrity and fairness. In order to do so, a 
thorough analysis of market participants, i.e. agents, is necessary 
[20]. In this context, algorithmic traders can be classified as 
autonomous agents that (proactively) interact with other agents 
[8]. In other words, the rising share of algorithmic trading activity 
may entail necessary changes to electronic market design from 
both a “mechanism designer” and a “system designer” viewpoint. 

Second, gained insights on the influence of information 
technology (IT) on market quality are most useful in the current 
discussion on regulation of algorithmic or high frequency traders. 
In a similar context, [19] also see the necessity to investigate 
“how the use of intelligent agents influences the market structure, 
the market process, the interaction of market participants, the role 
of intermediaries, and the efficiency of electronic markets”. 

To sum up, in order to fill inherent research gaps our overall 
research question is as follows: does algorithmic trading increase 
volatility? 

Regarding algorithmic trading, there is no single accepted 
definition yet. Traditionally, algorithmic trading is often limited to 
“the automated, computer-based execution of equity orders […], 
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usually with the goal of meeting a particular benchmark” [7]. In 
other words, algorithmic traders are often limited to emulate a 
broker’s core competence: as illustrated in Figure 1 (Definition I), 
investors interpret relevant information and make an investment 
decision. Brokers are then asked to implement the decision on the 
market by achieving best possible prices. Brokers (or alternatively 
also investors with direct market access) may, however, 
alternatively also use algorithmic trading engines to execute the 
orders, i.e. for example employ an algorithm that automatically 
slices a large order into smaller pieces to reduce market impact. 

Nonetheless, algorithmic traders may also follow their own active 
trading strategies derived from available information (Definition 
II). The strategies are usually designed to close with a flat position 
at the end of the trading day. Therefore, from our point of view a 
broader definition of algorithmic trading seems more viable, i.e. 
the “use of computer algorithms to manage the trading process” 
[12]. 
 
Definition I: Best possible execution of equity orders 

 

Definition II: Active trading strategy 
 

Figure 1: Simplified illustration of the trading value chain 
We approach the overall research question as follows: we gather 
pieces of evidence that will allow us to answer whether or not 
algorithmic traders are – mainly – responsible for high volatility 
levels. Hereby, we pick up different arguments already brought 
forward by both researchers and the media. In particular, we 
analyze the heterogeneity of algorithmic trading strategies 
(section 4), the impact of algorithmic trading on volatility levels 
(section 5), the algorithmic trading liquidity supply during periods 
of high volatility (section 6), and the algorithmic trading order 
cancellation behavior during periods of high volatility (section 7). 
Consequently, we will finally be able to offer rigorous support in 
the relevant discussion on the role of technology and computers in 
today’s financial markets. This knowledge is for example highly 
relevant in the course of the currently held discussion on 
algorithmic trading regulation (section 8). 

2. RELATED WORK 
Besides above depicted (German) information systems literature, 
i.e. “market engineering” and the “impact of IT”, our research 
also contributes to finance literature. With the emergence of 
algorithmic trading concepts both researchers and practitioners 
were interested in whether or not algorithmic trading, compared to 
traditional brokerage with human intermediaries, actually creates 
additional value [3]. For example, [7] found the execution quality 
of the analyzed early-stage algorithms to be inferior; but as 
employing human brokers is considerably more costly, the use of 
algorithmic trading was assessed as basically creating value. 

An additional, primarily practitioner-oriented, stream of research 
aims to answer which kind of algorithm to choose for which kind 
of task and how to actually evaluate its` success [14][22]. The 
continuously rising market shares of algorithmic trading during 
the last decade, however, also called for research on the influence 
of algorithmic trading on the market as a whole. Despite the 
eligible interest in this topic, there is only little empirical research 
in this area primarily because of the lack of appropriate data. The 
stream of research that concentrates on the influence of 
algorithmic trading on the market as a whole can be divided into 
two sub-categories in line with the analyzed market quality 
indicators, i.e. liquidity and volatility. In this context, the research 
questions are usually whether or not algorithmic trading decreases 
liquidity levels and / or whether or not algorithmic trading 
increases volatility levels. 

For the U.S. market, [12] find that algorithmic trading likely 
improves liquidity rather than impairs liquidity levels. They are, 
however, not able to precisely identify algorithmic trading 
activity. Instead, [12] use the normalized measure of New York 
Stock Exchange (NYSE) electronic message traffic as a proxy for 
algorithmic trading activity. Given that both [9] and [11] observe 
that algorithmic traders, for example, tend to continuously adjust 
their existing orders on a (milli-) second basis, the assumption that 
there is a connection between electronic message traffic and 
algorithmic trading activity seems viable. Nonetheless, their proxy 
still remains very unspecific and may not appropriately pick up 
variations in algorithmic liquidity supply. In this context, [9] 
points out that algorithmic traders “blur traditional definitions” on 
how liquidity is supplied to the market. According to [9], the 
liquidity provided by algorithmic traders tends to be rather 
transient and therefore liquidity measures that are based on 
committed liquidity need to be questioned. 

Being equipped with an intraday high-frequency dataset similar to 
ours that allows for the precise identification of algorithmic 
traders, [13] provide evidence that algorithmic traders should 
improve both price efficiency and market liquidity. Nonetheless, 
[13] were merely provided with data on orders submitted by 
algorithmic traders, i.e. not all order book events. Therefore, they 
were not able to for instance identify traded volumes between 
humans or between humans and algorithmic traders (see Section 
4). Finally, [16] provide further evidence that algorithmic traders 
increase liquidity and the informativeness of prices. Their insights 
were gained through a natural experiment, i.e. a system upgrade 
(release 8.0) of the fully-electronic trading platform Xetra that 
reduced round trip system latency from 50ms to 10ms. 

Regarding volatility, however, there are only very few rigorous 
research results available. The most important work by [2] has 
been conducted in the foreign exchange market where algorithmic 
trading is a far more recent phenomenon than in the equity 
market. Despite of less diverse trading strategies among 
algorithmic traders, [2] conclude that, if anything, the presence of 
algorithmic trading is associated with lower volatility. Similarly, 
[10] finds that algorithmic trading has the potential to lower 
market volatility. The study is, however, merely based on artificial 
data generated within a controlled simulation environment. 

Overall, we may conclude that existing research suggests that 
algorithmic trading does not increase volatility. Nonetheless, we 
have also seen that this stream of research still lacks rigorous 
empirical research. Therefore, we aim to close this gap. While 
other authors make use of questionable proxies for algorithmic 
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trading activity [12], merely analyze an incomplete dataset [13], 
or work in an idealized and simplified simulation-based 
environment [10] we contribute to existing literature by analyzing 
a complete real-world equity market high-frequency dataset that 
contains the best currently available proxy for algorithmic trading 
activity. 

3. DATA DESCRIPTION 
Below empirical analyses are based on a unique high-frequency 
dataset directly provided by Deutsche Börse AG, i.e. the operator 
of the German Frankfurt Stock Exchange. The Frankfurt Stock 
Exchange offers both floor-trading and fully-electronic trading via 
Xetra. In 2007, 98.30% of order book turnover in German blue-
chip DAX30 equities took place on Xetra [6]. 

The provided dataset contains all Xetra order book events during 
the period under investigation, i.e. between October 8th 2007 and 
October 12th 2007. Each order, which is assigned a unique order 
number by the trading system, should at least trigger two events 
(Table 1): first, a submission event and second either a full 
execution or a cancellation / deletion event. Each order can be 
partially executed and / or modified more than once. In Xetra, a 
modification event merely refers to a reduction of order volume. 
An increase in order volume would negatively affect the priority 
or execution probability of other orders. In this case, the system 
automatically generates a deletion event for the modified order 
and a new order entry event with increased volume. Analogue, 
technical deletion and insertion events occur due to changing 
trade restrictions that do not affect the price-time priority of other 
orders. 
 

Table 1: Summary of order book events 

Event  Event frequency  % of all 
events 

  AT H   
Submission  2,171,613 1,936,909  46.47 % 
Cancellation  1,558,511 1,518,736  34.81 % 
Full execution  583,638 374,028  10.83 % 
Partial execution  230,430 300,730  6.01 % 
Others  28,138 56,255  0.95% 
Modification  51,722 30,260  0.93 % 

 
For each event the following additional information is provided: 
timestamp, international security identification number (ISIN), 
order number, auction trade flag, order type, buy/sell indicator, 
(hidden) size, price / limit, event code, trade restriction, and 
ATflag. 

The auction trade flag indicates the trading phase, e.g. continuous 
trading, during which the specific event occurred. One order may 
reveal different auction trade flags as for example order 
submission and order execution can take place during different 
trading phases. Order type indicates whether an order is a limit 
order, market order, iceberg order or market-to-limit order. Orders 
may also be restricted to be exclusively executed during a certain 
trading phase (trade restriction), e.g. auctions. 

The ATflag indicates whether (ATflag = 1) or not (ATflag = 0) a 
certain event has been triggered by an algorithm. It does not allow 
the identification and exploitation of activities of single market 
participants though. The identification of algorithms is made 
possible because Deutsche Börse AG offers its clients a special 
pricing model for computer generated trades called Automated 

Trading Program (ATP). Participants of the Automated Trading 
Program oblige themselves to exclusively make use of the rebate-
relevant Automated Trading User-ID whenever transactions have 
been generated by an electronic system. The definition of an 
electronic system is as follows: 

The electronic system has to determine two out of the three 
following order parameters: price (order type and / or 
order limit where applicable), timing (time of order entry) 
and quantity (quantity of the order in number of 
securities). […] The electronic system must generate buy 
or sell orders independently, i.e. without frequent manual 
intervention, using a specified program or data. [5] 

Considering both above “electronic system” definition and 
granted financial incentives (fee rebates), the algorithmic trading 
flag can be appreciated as the best proxy for algorithmic trading 
activity currently available. In other words, we are able to 
differentiate between orders submitted by humans and orders 
submitted by algorithms, i.e. by one of the two groups. It shall, 
however, be noted that despite of the strong financial incentives 
not all algorithmic traders may take part in the program. As 
exemplarily shown by [13] the fee rebates “for high-frequency 
trading firms, whose turnover is much higher than the amount of 
capital invested, the savings [associated with the automated 
trading program] are significant”. Therefore, the identification of 
algorithmic traders via the automated trading program is seen as 
the best currently available proxy for algorithmic trading activity. 
During the following we will therefore assume that ATP members 
are equivalent to algorithmic traders (AT) and that the remaining 
non-ATP members are humans (H). 

The dataset allows for an order book reconstruction of covered 
DAX30 securities at any time during the period under 
investigation, including all trading phases. Basically, all orders 
submitted prior to the time of interest, i.e. order book 
reconstruction, that are not fully executed, cancelled or deleted 
(including “deleted” invalid day orders) remain in the order book. 
The actual order limits are determined by further incorporating 
partial executions and modifications. The order entry timestamp 
allows for the consideration of time priority. 

4. DIVERSITY OF ALGORITHMIC 
TRADING STRATEGIES 
4.1 Motivation 
In this section we do not attempt to approach the overall research 
question by directly linking algorithmic trading activity and 
observed volatility levels. Instead, we first want to gather rather 
indirect evidence for or against the volatility-increasing 
proposition of algorithmic traders by assessing the diversity of 
algorithmic trading strategies. 

If algorithmic traders tended to follow similar active trading 
strategies, these should crowd on the same side of the market. [17] 
also state that “volatility increases under one-sided conditions”. 
For example, let us assume that all algorithmic traders were 
following a strategy that capitalizes on an expected relationship 
between the movement of stock A and the time-delayed 
movement of stock B. Let us further assume that the developers of 
this algorithmic trader employ similar models because of identical 
available input, i.e. historical price time series. If the price of 
stock A increases (by for instance more than 2%), the algorithmic 
traders expect the price of stock B to increase, too. Therefore, all 
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algorithmic traders should try to build up a long position in stock 
B, i.e. buy shares in stock B. Depending on their level of 
aggressiveness, these would then either try to instantaneously buy 
shares via submitting buy market orders or try to get hit by 
another traders’ aggressive sell orders by submitting passive buy 
limit orders. In both cases algorithmic traders were crowding on 
the same side of the market, i.e. the bid side. The combination of 
many aggressive buy market orders and no passive liquidity 
supplying sell orders (provided by algorithms) would result in 
large swings of prices, i.e. high volatility. It is against this 
background that the evaluation of algorithmic trading strategies 
should enable us to gain valuable insights to answer our research 
question. 

We evaluate whether or not algorithmic traders – in aggregate – 
follow less diverse trading strategies by means of two different 
research approaches. If both approaches, i.e. methodologies, yield 
equivalent results, then our inferred implications are seen as 
robust. 

4.2 Methodology I: Benchmark Model 
In order to investigate the correlation of algorithmic strategies we 
adopt the approach proposed by [2] who argue that algorithmic 
traders are expected to trade less among themselves and more 
with humans, if the algorithmic traders follow homogeneous 
trading strategies. “At the extreme, if all computers used the very 
same algorithms and had the exact same speed of execution, we 
would observe no trading volume among computers. Therefore, 
the fraction of trades conducted between computers contains 
information on how correlated their strategies are” [2]. 

On the basis of a simple benchmark model that assumes random 
and independent matching of trades we are able to determine the 
theoretical probabilities of trades conducted between and among 
the two groups of traders, i.e. humans and algorithmic traders. 
Additionally differentiating between the aggressive counterparty 
who triggered a trade and the passive counterparty who has been 
hit by an aggressive order, four possible trade combinations are 
possible (passive/aggressive): human/human, algorithmic 
trader/human, human/algorithmic trader, and algorithmic 
trader/algorithmic trader. 

After minor transformations (see Appendix I), the relation 
between the four trade combination probabilities can be re-written 
as follows [2]: 

Prob(H/H) / Prob(AT/H) = Prob(H/AT) / Prob(AT/AT) 

 
 R_H R_AT 

From above equation two ratios can be extracted: “R_H” (i.e. 
aggressive human) and “R_AT” (i.e. aggressive algorithmic 
trader). Both ratios might be above one if the number of human 
traders is larger than the number of algorithmic traders. Given 
above assumption of a random matching process the ratio of ratios  
R = R_AT / R_H, however, will be equal to one. This is the case 
if humans and algorithmic traders, both being the aggressive 
trading counterparty, take about the same proportion of liquidity 
from (other) passive humans. 

Next, ex-post proxies for R_H, R_AT and R are calculated on a 
daily basis for each security in above introduced dataset in the 
following manner: 

R_Hproxy = Vol(H/H) / Vol(AT/H) 

R_ATproxy = Vol(H/AT) / Vol(AT/AT) 

Rproxy = R_Hproxy / R_ATproxy 

Thereby Vol(passive/aggressive) marks the daily trading volume 
between the respective passive and aggressive trading 
counterparties. Finally, the mean / median of the cross-sectional 
daily ratio of ratios Rproxy is compared to the theoretically derived 
ratio of ratios R. We consequently formulate the following null- 
and alternative hypotheses: 

( ) 1:0 =proxyRH μ    .vs    ( ) 1: ≠proxyA RH μ  

The rejection of the null hypothesis would provide evidence that 
algorithmic trading strategies are more homogeneous than the 
trading strategies applied by human traders. 

4.3 Empirical Results I: Benchmark Model 
Descriptive statistics for the ratio of ratios Rproxy can be found in 
Table 2. Given the descriptive statistics it can be observed that 
both the mean and the median values are close to one, i.e. close to 
the theoretically derived benchmark ratio or ratios R. 
 

Table 2: Descriptive statistics for the ratio of ratios 

 Mean Median Standard 
deviation 

Rproxy 1.0211 0.9874 0.2541 
N 150   

 
Test results for above defined hypotheses are summarized in 
Table 3. Test results for both the mean (t-test) and the median 
(Wilcoxon signed rank test) provide further evidence that above 
defined null hypotheses may not be rejected. 
 

Table 3: Test results for the ratio of ratios 
Hypothesis µ Significance 

( ) 1:0 =proxyRH μ mean 0.310 
( ) 1:0 =proxyRH μ median 0.892 

 
The results provide evidence that algorithmic traders trade with 
each other as much as random matching would predict. Therefore, 
we conclude that algorithmic strategies are just as diverse as 
human strategies. It follows that algorithmic traders as a whole 
should not particularly increase volatility because of 
homogeneous trading strategies, i.e. herding. 

This is, however, only true for the equity market (Xetra). In the 
foreign exchange market, for example, [2] find the opposite to be 
true. One possible explanation might be found with the fact that 
algorithmic traders in the equity market follow active profit-
generating trading strategies, compared to mere execution 
strategies, less exclusively than algorithmic traders in the foreign 
exchange market. Such a concentration on active profit-generating 
strategies would result in a less diverse trading strategy universe. 

4.4 Methodology II: Market Sidedness 
In order to further investigate the role both humans and 
algorithmic traders play in volatile market phases we additionally 
apply the market sidedness measure proposed by [17]. Similarly 
to above introduced ratio of ratios, the market sidedness measure 
also reveals whether or not market participants follow similar 
strategies. 
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4.4.1 Market Sidedness 
If algorithmic traders followed homogeneous trading strategies, 
we would expect them to trade on the same side of the market, i.e. 
either primarily buy or sell. The market sidedness measure 
provides us with insights into whether trading has been more one-
sided or more two-sided during a certain period of time. If 
algorithmic traders trade more one-sided than human traders 
during periods of high volatility, we could assume them to follow 
less diverse trading strategies than humans. 

Market sidedness (MS) is estimated by the correlation between 
ZBUY and ZSELL [17]: 

ZBUY = (BUY – Mean(BUY)) / SD(BUY) 

ZSELL = (SELL – Mean(SELL)) / SD(SELL) 

BUY (SELL) is the number of buyer- (seller-) initiated trades in 
an interval, i.e. on which side of the market has the pressure to 
execute been larger. The identification of relevant intervals is 
explained in more detail in section 4.4.2. Mean and SD are the 
sample mean and standard deviation [17]. 

4.4.2 Identification of High Volatility Intervals 
As we are mostly interested in how algorithmic traders and 
humans behave during periods of high volatility, we need to 
identify those. Being provided with a high-frequency intraday 
dataset, we divide the trading day into 5-minute intervals. For 
reasons of better comparison we concentrate on continuous 
trading phases only. Those 5-minute intervals than contain any 
kind of auction (e.g. closing auction) have been excluded from the 
analysis. 

For the calculation of volatility levels within each of the 5-minute 
intervals we apply a risk model from [4] that is based on short-
term price volatility. Realized volatility, σ[t1,t2], is calculated using 
transaction returns in the following manner: 

∑=
=

N

i ttitt r
1

2
]2,1[,]2,1[σ  

Here, ri,[t1,t2] is defined as the return of the ith transaction during 
time interval [t1, t2], i.e. each 5-minute interval. In financial risk 
research, the importance of realized volatility has been 
emphasized by for example [1]. 

In order to account for microstructure effects such as negative 
autocorrelation that may negatively affect the validity of our 
volatility measure, we adjust the σ[t1,t2] measure with a Bias factor 
[4]: 

reft

tq
Bias

Δ

Δ=
σ

σ

       

with  Δt ref = q · Δt 

The bias factor is calculated by observing a bias-free reference 
case (with a large enough time interval Δtref) to judge the bias of 
smaller intervals Δt. As proposed in [4], one working day has 
been used as Δtref and Bias has been calculated on the basis of a 
one year price history for each DAX30 security. On the basis of 
the calculated Bias that is measured in terms of how much Bias 
deviates from 1, a corrected realized volatility measure RV[t1,t2],corr 
is calculated by: 

BiasRV ttcorrtt ]2,1[],2,1[ σ=  

Given the realized (corrected) volatility value for each 5-minute 
interval during the period under investigation for each security, 

the high (low) volatility intervals were identified as those being in 
the top (bottom) 5% (percentile). The empirical distribution of 
realized volatility for all 30 securities during the period of 
investigation is presented in Figure 2. 

 
Figure 2: Empirical distribution of realized volatility 

As it can be observed in Figure 3 the distribution of high (low) 
volatility intervals is in line with what literature suggests about 
intraday volatility shapes, i.e. high volatility levels at the 
beginning of the trading day and rather low volatility levels at the 
middle of the trading day [21]. 

 
Figure 3: Distribution of high / low volatility intervals 

4.4.3 Evaluation Setup 
ZBUY and ZSELL are calculated for each 5-minute high-
volatility interval. The market sidedness measure MS, i.e. the 
correlation between ZBUY and ZSELL, is calculated for each 
security resulting in 30 MS values. 

If algorithmic traders followed less diverse trading strategies than 
humans, we would expect them to trade more one-sided. If 
algorithmic traders consequently followed less diverse trading 
strategies during periods of high volatility, we could – at least – 
argue that there is an interrelation between algorithmic trading 
activity and volatility because of the use of homogeneous trading 
strategies by algorithmic traders. We consequently formulate the 
following null- and alternative hypotheses: 

( ) ( )AT
high

H
high MSMSH μμ ≤:0

   .vs    ( ) ( )AT
high

H
highA MSMSH μμ >:  

72



Hereby, MShigh depicts market sidedness for periods of high 
volatility only. MSH (MSAT) depicts market sidedness for humans 
(algorithmic traders) only. Due to the fact that we were provided 
with detailed high-frequency order book information, we are able 
to determine ZBUY and ZSELL for the trader groups human and 
algorithmic traders separately. 

4.5 Empirical Results II: Market Sidedness 
Descriptive statistics for the market sidedness measure MS can be 
found in Table 4. Mean correlation values were calculated based 
on Zfisher-transformed correlation coefficients. The descriptive 
results provide first evidence that both groups of traders exhibit a 
similar degree of market sidedness, i.e. during the N = 752 periods 
(5-minute intervals) of high-volatility. 
 

Table 4: Descriptive statistics for market sidedness 
 Mean Median 

AT
highMS  0.3866 0.3577 
H
highMS  0.3802 0.4022 

 
Test results for above defined hypotheses are summarized in 
Table 5. The median correlations are compared using the 
Wilcoxon test. Test results provide further evidence that above 
defined null hypothesis cannot be rejected. 
 

Table 5: Wilcoxon test results for market sidedness 
Hypothesis Significance 

( ) ( )AT
high

H
high MSMSH μμ ≤:0

 0.926 
 
Given above results we may conclude that both groups of traders, 
i.e. both algorithmic traders and humans, exhibit similar degrees 
of market sidedness during periods of high volatility. In other 
words, both groups exhibit a similar diversity of trading strategies. 
In line with the evidence found in section 4, we therefore do not 
expect algorithmic traders to increase market volatility because of 
rather homogeneous trading strategies; at least not more than 
human traders do. 

5. IMPACT OF ALGORITHMIC TRADING 
ACTIVITY ON VOLATILITY 
5.1 Motivation 
After having gathered rather indirect evidence on the role 
algorithmic trading plays regarding its’ influence of volatility, this 
section’s approach is more straight forward. If algorithmic trading 
had a worsening influence on volatility, we should observe a 
causal positive relationship between the two figures. In other 
words, an increase in algorithmic trading activity should result in 
an increase in volatility. 

5.2 Methodology 
In order to derive a causal relationship between algorithmic 
trading activity and volatility, we estimate a regression equation 
by means of OLS: 

∑
=

− +⋅+⋅+⋅+=
5

1
,,

k
tcorrktttcorrt RVDTATRV εδγβα  

Hereby, RVt,corr is equivalent to above defined realized volatility 
measure during interval t = 1, …, T. ATt stands for two different 
measures that indicate the degree of algorithmic trading activity. 
First, the fraction of executed volume with any algorithmic 

trading participation, i.e. both passive and aggressive (ATany). 
Second, the fraction of executed volume with algorithmic traders 
being aggressive, i.e. taking liquidity (ATaggressive). 

Vol(all) = Vol(H/H) + Vol(H/AT) + Vol(AT/AT) + Vol(AT/H) 

ATany = (Vol(H/AT) + Vol(AT/AT) + Vol(AT/H)) / Vol(all) 

ATaggressive = (Vol(H/AT) + Vol(AT/AT)) / Vol(all) 

DTt constitutes a set of time dummies to control for intraday 
variations of volatility. Moreover, k lags of the realized volatility 
measure RVt,corr are included to control for the strong serial 
correlation in volatility [1]. Finally, εt is the error term. While the 
analysis in section 5 has been restricted to a certain selection of 
volatility intervals, the respective inputs into the OLS regression 
are calculated for each 5-minute interval (but still without those 
that contain auctions). 

As highlighted by [2], the error term εt may not be uncorrelated 
with ATt. This potential endogeneity issue arises because 
algorithmic trading activity may not only have an influence on 
volatility, but volatility levels may also influence the behavior of 
algorithmic traders. As it is not clear in which direction a possible 
bias will go, we additionally adopt an instrumental variable (IV) 
approach to deal with the endogeneity issue.  

Hereby, we need to find an instrumental variable that is 
uncorrelated with the error term εt, but correlated with ATt. As it is 
very difficult to find an instrumental variable that meets these 
criteria, we adopt an alternative method. Thereby, the 
instrumental variable is created by lagging the troublesome 
variable, i.e. ATt. Operationally, the problem is solved by means 
of Two-Stage Least-Squares Regression (2SLS). 

5.3 Empirical Results 
Results for both the OLS and the 2SLS regression can be found in 
Table 6. While the model is not capable to explain variations in 
volatility too well – given the low R2 value – the coefficients for 
the algorithmic trading activity measure ATt are significant at very 
high levels of significance. Moreover, the coefficients of both the 
OLS and the 2SLS regression point into the same direction. The 
negative coefficients imply that the participation of algorithmic 
traders is not associated with higher levels of volatility, but – if at 
all – with lower levels of volatility. 
 

Table 6: Regression results of algorithmic trading impact 
 OLS estimation  2SLS estimation 
Coeff. on ATany - 0.005 ***  - 0.007 *** 
R2 0.176  0.174 

  
Coeff. on ATaggressive - 0.004 ***  - 0.006 *** 
R2 0.177  0.174 
*** indicates significance at the 1%-level. 

 
To conclude, the results of the regressions provide further 
evidence that algorithmic traders should not be made responsible 
for high(er) levels of volatility. 

6. VOLATILITY & THE ROLE OF 
LIQUIDITY SUPPLY 
6.1 Motivation 
So far, we have primarily concentrated on the aggressive / 
liquidity-taking behavior of algorithmic traders. [13], however, 
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note that “AT could also exacerbate volatility by not supplying 
liquidity”. In other words, volatility may not only be increased by 
submitting aggressive market (or limit) orders, but additionally by 
not supplying liquidity during periods of high volatility. 
Moreover, [9] argues that the liquidity contribution of algorithmic 
traders is more transient anyway. For example, think of the 
following – rather extreme – limit order book situation: 
 

Table 7: Exemplary order book 
Bid   Ask  
Size Limit (€)  Limit (€) Size 
1,000 50.00  50.10 * 500 * 
5,000 49.50  50.50 * 1,000 * 
5,000 49.10  55.00 1,000 
1,000 47.70  80.30 1,000 

 
While the absolute spread, i.e. the difference between best bid (€ 
50.00) and best ask (€ 50.10) is comparatively small, the 
committed liquidity on the ask side is already comparatively low. 
The mid-point, i.e. the middle between best bid and best ask, is at 
€ 50.05. If those orders that are marked with a star (*) are now 
deleted, without being executed, the new mid-point would already 
be € 52.25. If additionally a market buy order is submitted, it will 
also be matched at € 55.00 (price). 

If we observed algorithmic traders to actually withdraw much 
liquidity from the order book during periods of high volatility, we 
could assume that there exists a connection between their actions 
and the observed volatility levels. 

6.2 Methodology 
Aiming to analyze whether algorithmic traders are responsible for 
higher levels of volatility because of lower liquidity contributions, 
we need to define appropriate liquidity proxys. In this case, we 
believe that liquidity contribution should not be scrutinized in 
isolation. Instead, it should also be taken into account how much 
liquidity has been taken from the order book. This allows us a 
better view on the trend in overall liquidity levels. 

The first proposed liquidity-balance measure is based on 
committed liquidity, i.e. the liquidity provided by means of limit 
orders in the limit order book. Submitted orders increase the 
volume of committed liquidity and cancelled orders decrease the 
volume of committed liquidity. Therefore, the liquidity-balance 
during a certain interval is given by the net-submissions (NSub). 
NSub = Vol(Submission) – Vol(Cancellation) 
In order to compare the net-submission values among trader 
groups, a net-submission ratio (R_NSub) is additionally calculated 
for each trader group and each interval. 
R_NSub = Vol(Submission) / Vol(Cancellation) 
If R_NSub is larger than one, then more volume has been provided 
than withdrawn during the relevant period. If algorithmic traders 
were responsible for high volatility levels, we would expect them 
to have a significantly lower R_NSubAT than humans during the 
relevant intervals (and an R_NSubAT below one). We consequently 
formulate the following null- and alternative hypotheses: 

( ) ( )H
high

AT
high NSubRNSubRH __:0 μμ ≤  

vs. 
( ) ( )H

high
AT
highA NSubRNSubRH __: μμ >  

In order to find evidence whether or not R_NSub actually has a 
worsening influence on volatility, the following regression 
equation is estimated: 
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Compared to the regression conducted in section 6, the only 
difference can be found with R_NSubt that replaces ATt. Within 
2SLS, of course, R_NSubt is lagged. The second proposed 
liquidity-balance measure is based on the liquidity provided 
during executions. The net-provided trading volume figure is 
calculated as follows: 
R_NlqAT = (Vol(AT/H) + Vol(AT/AT)) / (Vol(H/AT) + Vol(AT/AT)) 
R_NlqH = (Vol(H/AT) + Vol(H/H)) / (Vol(AT/H) + Vol(H/H)) 
Analogue to above net-submission ratio we formulate the 
following null- and alternative hypotheses for the net-provided 
trading volume ratio: 

( ) ( )H
high

AT
high NlqRNlqRH __:0 μμ ≤  

vs. 
( ) ( )H

high
AT
highA NlqRNlqRH __: μμ >  

Both R_NSub and R_Nlq are calculated for both trader groups 
algorithmic traders and humans. 

6.3 Empirical Results 
First descriptive statistics on associated volumes of liquidity-
related events during high / low volatility intervals can be found 
in Table 8. Submitted volume, if associated with non-aggressive 
limit orders, adds liquidity to the order book. In contrast, 
cancelled volume withdraws committed liquidity from the order 
book. Therefore, the net-submission volume provides an 
indication of overall liquidity levels. 

It can be observed that algorithmic traders, compared to human 
traders, seem to be more active during periods of low volatility. 
Moreover, high volatility intervals exhibit a negative net-
submission volume while low volatility intervals exhibit a positive 
net-submission volume. In other words, during periods of high 
volatility more volume is actively withdrawn from the order book 
than added back to the order book (not even taking into account 
executed volume). 
 

Table 8: Descriptive statistics on 
mean volumes associated with events 

Events Intervals: High  Intervals: Low 
 ALL % AT  ALL % AT 
Submission 705,709 0.352  102,620 0.461 
Cancellation 1,324,147 0.169  73,316 0.385 

  
Net-Submission 
(NSub) - 618,438   29,304  

 
This insight is in line with our argument that volatility may not 
only be caused because of aggressive market behavior, but also 
because of extremely passive / cautious liquidity-withdrawing 
behavior. The descriptive statistics, however, do not tell us 
whether the net-submission volume is negative because of high 
volatility levels or whether the volatility levels are high because of 
negative net-submissions. The regression results that were 
expected to shed more light on this are not unambiguous (Table 
9). Given that the 2SLS estimation is more accurate, we may 
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conclude though that the net-submission ratio has no significant 
influence on volatility levels. 
 

Table 9: Regression results for net-submission ratio 
 OLS estimation  2SLS estimation 
Coeff. on  
(R_NSubAT&H - 1) - 0.002 ***  0.001 

R2 0.179  0.171 
*** indicates significance at the 1%-level. 
 
Nevertheless, aiming to answer whether or not algorithmic trading 
increases volatility, we analyze the net-submission behavior of 
algorithmic traders and humans during periods of both high and 
low volatility (Table 10). Given the descriptive statistics and in 
particular R_NSub, it can be observed that both groups of traders 
exhibit lower net-submission volumes during periods of high 
volatility compared to periods of low volatility. During periods of 
high volatility, however, algorithmic traders still provide more 
liquidity than these withdraw liquidity. 
 

Table 10: Descriptive statistics on net-submission volume 
 Intervals: High  Intervals: Low 
 Mean Median  Mean Median 
NSubAT 76,164 22,146  25,023 2,188 
NSubH - 694,602 - 354,604  4,281 1,201 
      
R_NSubAT 1.349 1.221  1.508 1.231 
R_NSubH 0.687 0.436  1.322 1.075 
 
The test results for above defined hypotheses on the mean (t-test) 
and median (Wilcoxon test) differences in net-submission ratios 
are depicted in Table 11. For high volatility intervals, both the 
mean and the median test reveal the same results: the null 
hypotheses can be rejected at high levels of significance. In other 
words, humans provided significantly less committed liquidity 
during high volatility periods. For low volatility intervals, the 
mean and the median test do not reveal the same results: the null 
hypothesis for the median, however, can be rejected at a high 
level of significance. 
 

Table 11: Test results for net-submission ratios 
Hypothesis µ Significance

( ) ( )H
high

AT
high NSubRNSubRH __:0 μμ ≤  mean 0.001 

( ) ( )H
low

AT
low NSubRNSubRH __:0 μμ ≤  mean 0.109 

   
( ) ( )H

high
AT
high NSubRNSubRH __:0 μμ ≤  median 0.000 

( ) ( )H
low

AT
low NSubRNSubRH __:0 μμ ≤  median 0.000 

 
Independent of whether not providing committed liquidity leads to 
higher volatility levels – or at least facilitates larger swings in 
prices – we may already conclude that algorithmic traders are not 
to be made responsible for a potential liquidity dry-up effect. Our 
results indicate that algorithmic traders provide more liquidity to 
the market than they withdraw from the market during periods of 
high volatility. It shall, however, also be noted that our analysis 
does not take into account where – at which level – the liquidity 
has been added, i.e. has the liquidity contribution been useful to 
the market. Against this background, we additionally evaluate the 
net-provided liquidity in actual transactions (Table 12).  

Table 12: Descriptive statistics on net-provided traded volume 
 Intervals: High  Intervals: Low 
 Mean Median  Mean Median 
R_NlqAT 1.174 1.009  1.407 0.836 
R_NlqH 1.098 0.992  2.365 1.035 
 
Descriptive statistics on the net-provided traded volume reveal 
that the difference in R_Nlqhigh ratios between algorithmic traders 
and humans is not as obvious as it was in the earlier net-
submission volume (R_NSub) case. T-test and Wilcoxon test 
results for above defined hypotheses give an additional indication 
on the relationship of ratios (Table 13). 
 

Table 13: Test results for net-provided trading volume 
Hypothesis µ Significance

( ) ( )H
high

AT
high NlqRNlqRH __:0 μμ ≤  mean 0.107 

( ) ( )H
low

AT
low NlqRNlqRH __:0 μμ ≤  mean 0.006 

 
( ) ( )H

high
AT
high NlqRNlqRH __:0 μμ ≤  median 0.725 

( ) ( )H
low

AT
low NlqRNlqRH __:0 μμ ≤  median 0.000 

 
The test results show that the difference in net-provided trading 
volume is not significantly different between algorithmic traders 
and humans in periods of high volatility. To sum up: While we 
have seen a significant different in R_NSubhigh, there is no 
significant different in R_Nlqhigh. In other words, algorithmic 
traders do seem to provide more committed liquidity (NSub) 
during times of high volatility. The provided liquidity is, however, 
not used by the market in transactions, i.e. it does not translate 
into higher degrees of supplied liquidity in executions. 
Consequently, the negative net-submission ratios of humans 
during periods of high volatility might simply be the reaction to 
unintentional liquidity-supply during in executions. Furthermore, 
for periods of low volatility the relative strength of R_NSub and 
R_Nlq is even twisted. For example humans exhibit a smaller 
R_NSub than algorithmic traders, but simultaneously show a 
larger R_Nlq. 

Nonetheless, overall we do not find evidence that algorithmic 
traders withdraw more liquidity from the market than humans do. 
Therefore, we may conclude that algorithmic traders do not 
increase volatility by not supplying liquidity; at least not more 
than humans do. 

7. CANCELLATION BEHAVIOR OF 
ALGORITHMIC TRADERS 
7.1 Motivation 
Closely related to above evaluated provision of liquidity, we 
analyze the order adjustment behavior of algorithmic traders in 
this section. [11], for instance, suggest that algorithmic traders 
constantly observe the market and adapt their placed orders 
accordingly. Consequently, the lifetimes of orders submitted by 
algorithmic traders are significantly shorter than the lifetimes of 
orders submitted by humans [9].  

If algorithmic traders were somehow responsible for higher 
volatility levels, then we should – at least – observe a significantly 
different order adjustment behavior of algorithmic traders during 
periods of high and low volatility respectively. As order 
adjustment usually takes place by cancelling an existing order and 
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submitting another order (Table 1), we analyze the order 
cancellation behavior. 

7.2 Methodology 
The evaluation of cancellation behavior is straight forward. For 
each high / low volatility 5-minute interval we examine the orders 
that were actively cancelled during the interval. For each of these 
orders we calculate the time to cancellation Tc, i.e. the time 
difference between submission and cancellation. As we are able to 
differentiate between orders that were submitted by humans and 
orders that were submitted by algorithmic traders, we calculate the 
time to cancellation Tc for both groups of traders separately. 

If algorithmic traders were responsible for high volatility levels, 
we would expect them to exhibit a significantly different 
cancellation behavior during periods of high volatility compared 
to periods of low volatility. Moreover, we would even expect TcAT 
to be smaller during periods of high volatility because algorithmic 
traders need to adjust their orders more frequently. In periods of 
frequent trading activity, humans also need to adjust their orders 
more frequently, but these are not necessarily able to do so 
(technically / operationally). We consequently formulate the 
following null- and alternative hypotheses: 

( ) ( )trader
low

trader
high TcTcH μμ ≥:0

   .vs    ( ) ( )trader
low

trader
highA TcTcH μμ <:  

Hereby, TcAT (TcH) depicts the time to cancellation for algorithmic 
traders (humans). Tchigh (Tclow) depicts time to cancellation for 
high (low) interval subsamples. 

7.3 Empirical Results 
Descriptive statistics for the lifetimes of cancelled orders can be 
found in Table 14. First, it can be observed that independent of the 
intervals, i.e. high or low volatility, the time to cancellation for 
algorithmic traders is shorter than the time to cancellation for 
humans. With regard to algorithmic traders only, it can be seen 
that the mean time to cancellation is very similar during both high 
and low periods of volatility. In other words, algorithmic traders 
do not seem to particularly adjust their cancellation behavior to 
existing volatility levels. Contrary, humans cancel their orders 
earlier during periods of high volatility. 
 

Table 14: Descriptive statistics for orders cancelled 

 Mean 
(in sec) 

Standard 
deviation 

AT
highTc  777 6,565 
AT
lowTc  752 5,971 

   
H
highTc  4,448 13,102 
H
lowTc  7,294 44,322 

 
T-test results for above defined hypotheses are presented in Table 
15. 
 

Table 15: Test results for orders cancelled 
Hypothesis Significance 

( ) ( )AT
low

AT
high TcTcH μμ ≥:0

 0.469 
( ) ( )H

low
H
high TcTcH μμ ≥:0

 0.061 
 
The test results affirm our descriptive analysis with regard to the 
fact that the cancellation behavior of algorithmic traders in high 

and low periods of volatility is not significantly different from 
each other and that the cancellation behavior of humans in high 
and low periods of volatility is significantly different from each 
other. 
To conclude, we have seen that algorithmic traders cancel their 
orders after shorter periods of time than humans do. Nonetheless, 
in terms of a potential influence on volatility we cannot find a 
significantly different cancellation behavior of algorithms during 
periods of high volatility. Consequently, their cancellation 
behavior is most likely not responsible for the increased volatility 
levels. 

8. CONCLUSION & DISCUSSION 
Having conducted a literature review, we identified the impact of 
algorithmic trading on volatility (in the equity market) as an area 
of research that still lacks sufficient insights. Against this 
background, we empirically evaluated a unique high-frequency 
Xetra dataset that allowed us to precisely differentiate between 
algorithmic trading activity and human activity. Hereby, we 
picked up different arguments on how algorithmic traders could 
potentially increase volatility. 

Overall, our results provide sufficient evidence that algorithmic 
traders do not increase volatility more than humans do. In 
particular, we found that algorithmic traders in aggregate follow 
trading strategies that are as diverse as human strategies. 
Moreover, algorithmic trading participation does not significantly 
increase volatility levels; actually the opposite seems to be true. 
With regard to liquidity supply, algorithmic traders do not 
withdraw liquidity during periods of high volatility. Finally, 
algorithmic traders do not seem to adjust their order cancellation 
behavior to the respective volatility levels. 

It shall, however, be noted that our research results are limited 
with regard to the period of investigation. In the course of time, 
algorithmic traders may for instance have adapted similar trading 
strategies. Given that applied methodologies and models have 
become increasingly sophisticated, we do not believe that 
algorithmic trading strategies will turn less diverse though. 

Moreover, our results may not hold true in periods of extreme 
market movements. Even though we already investigated the top 
95%-percentile volatility intervals (Figure 2), more extreme 
market situations such as the “flash crash” observed on May 6th 
2010 are not represented by our data subset. On May 6th the Dow 
Jones Industrial Average fell nearly 1,000 points and single stocks 
such as Accenture fell to one-cent, i.e. almost lost all its’ value, in 
a 10-second period. While the market already recovered the same 
day, the Securities and Exchange Commission (SEC) is still 
looking for explanations and potential solutions. Against the 
background of our results, we would like to contribute to the 
discussion of possible causes and recall that algorithmic traders – 
as often blamed – do not seem to systematically withdraw 
liquidity from the market during periods of high volatility. In 
cases of extremely high volatility, however, these may naturally 
bail out of the market to reduce their own risk. This behavior 
should also be observed with human traders. The only difference 
is that algorithmic traders are able to make these decisions within 
milliseconds. Consequently, markets should also be “designed” 
[20] to handle actors that react within milliseconds to market 
movements. In other words, as algorithmic traders do not increase 
volatility during “normal” trading weeks, whatsoever constraint 
on high-frequency trading cannot be the solution to the observed 
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problem. Instead market safeguards should be adapted to 
European standards, i.e. volatility interruptions on a single stock 
basis (Xetra) instead of a market circuit-breaker. Appropriately 
employed market interruptions will enable for example market 
makers to adequately adjust their quotes, so that their stub quotes 
are not hit [18]. 

Future research should therefore also concentrate on the role of 
algorithmic (or high-frequency) trading in periods of extremely 
high volatility. 

9. APPENDIX I: BENCHMARK MODEL 
As stated above, the benchmark model is taken from [2]. In the 
model there are Hpassive potential human liquidity providers, 
Haggressive potential human liquidity takers, ATpassive potential 
algorithmic trader liquidity providers, and ATaggressive potential 
algorithmic trader liquidity takers. For a given period, the 
probability of an algorithmic trader providing liquidity is equal to 
(passive/aggressive): 

Prob(AT/ALL) = ATpassive / (Hpassive + ATpassive) = αpassive 

Analogue, the probability of an algorithmic trader taking liquidity 
is equal to: 

Prob(ALL/AT) = ATaggressive / (Haggressive + ATaggressive) = αaggressive 

Assuming that these events are independent, the following 
probabilities result for the four possible passive/aggressive 
combinations: 

Prob(H/H) = (1 - αpassive) (1 - αaggressive) 

Prob(H/AT) = (1 - αpassive) αaggressive 

Prob(AT/H) = αpassive (1 - αaggressive) 

Prob(AT/AT) = αpassive αaggressive 
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