THE DETERMINANTS OF STUDENT SATISFACTION WITH ONLINE VIDEO PRESENTATIONS

Sameh Al-Natour
American University of Sharjah, salnatour@aus.edu

Carson Woo
University of British Columbia

Follow this and additional works at: http://aisel.aisnet.org/siged2014

Recommended Citation
http://aisel.aisnet.org/siged2014/7
THE DETERMINANTS OF STUDENT SATISFACTION WITH ONLINE VIDEO PRESENTATIONS

Sameh Al-Natour
School of Business Administration
American University of Sharjah
salnatour@aus.edu

Carson Woo
Sauder School of Business
University of British Columbia

Abstract
The integration of online learning methods in blended learning environments has reached widespread acceptance and use. In this paper, we develop and test a model of the determinants of student satisfaction with a blended learning method, namely, online video presentations. In our model, we focus on both the social and utilitarian benefits that can be attained, and describe their role in enhancing student satisfaction with the online method. The results from a survey of 386 students confirm that the ability of an online learning method to affect social dynamics, such as reducing social comparison bias and enhance group participation, increases satisfaction. Furthermore, and consistent with prior research, the results revealed that properly employed online methods can enhance utilitarian benefits, such as increasing product originality and demonstrability, which subsequently increase satisfaction with the method.

Keywords: e-learning, multimedia, social media, blended learning, learning satisfaction.

I. INTRODUCTION
Online based learning has experienced unparalleled growth in recent years (Chen et al. 2010; Steiner et al. 2013). Similarly, research in this field has looked at a multitude of contexts, variables, and relationships, using a variety of research methods. Generally, online learning has been divided into two groups. The first concerns online environments where learning is fully mediated by technology. In such environments, none of the learning activities take place in a traditional classroom, but are completed through technology. The second group of online learning practices takes place in a blended learning environment that combines face-to-face and online learning (Halverson et al. 2012). This could include the use of older technologies such as forums and electronic bulletin boards (e.g., Steiner et al. 2013), or virtual worlds and simulation games to complement face-to-face lectures (e.g., Chen et al. 2010).

Research on blended learning methods has generally confirmed that online blended learning is perceived to be useful (Saadé and Bahli 2005), and has the potential to increase student satisfaction compared to traditional face-to-face methods or pure online environments (Owston et al. 2013). Correspondingly, this body of research has been successful in identifying a number of the antecedents to these positive evaluations, such as flow and cognitive absorption (Guo et al. 2013; Saadé and Bahli 2005), and media and instructional strategy characteristics (Chen et al. 2010), to name a few. However, a number of gaps in the literature still remain.

With the increased focus on collaborative learning, it is increasingly beneficial to understand the potential of new technologies in enhancing social learning (Baker-Eveleth et al. 2007). As suggested by Reychav et al. (2013): “Although advanced technology is now common and widespread, it is important to explore and understand the way technology and different
technological tools may influence the studying process, especially regarding aspects of personal perceptions of technology and the team...” (p. 3) In other words, while it remains important to understand how a specific technology can produce some tangible and utilitarian learning benefits (such as improving learning outcomes), it is of equal importance to understand how a specific technology can influence the social dynamics of the learning process (e.g., group dynamics), and potentially introduce new benefits derived from the innovative characteristics of the technology.

While a number of studies have looked at the hedonic and social value of new online methods (e.g., Goethals et al. 2011), their role in enhancing social dynamics and reducing social biases has received little research attention. There are of course some notable exceptions, such as Roodt and De Villiers (2011; 2013) who have looked at the role of social media applications in enhancing learning outcomes, and importantly, social dynamics between group members. Other work has also looked at how specific technologies can influence psychological variables, such as enhancing psychological safety, and the latter’s effects on in enhancing the perceived usefulness of a learning method (Reychav et al. 2013).

By the same token, while task-relevant and technology-specific benefits have been extensively studied in the literature, we find that the focus, with some notable and recent exceptions (e.g., Reychav et al. 2013; Roodt and De Villiers 2013), has been on more traditional technologies. With the continued improvement of telecommunication technologies, we believe there is a new breed of exciting learning technologies that can be integrated with social media.

In this paper, we develop and test a model of the determinants of student satisfaction with an online learning method that is both relatively new, and more importantly, can be integrated with social media. Specifically, we focus on how the use of recorded online video presentations that are shared via social media (specifically Facebook) can enhance group dynamics and enable students to create better presentations, compared to the traditional method of in-class presentations. Subsequently, using structural model analysis, we examine the extent to which these attained benefits influence satisfaction with the online video presentation learning method. Hence, in this study we pay added attention to the social effects of online learning methods, in addition to highlighting the important role played by outcome-based benefits.

II. RESEARCH MODEL AND HYPOTHESES

The research model is depicted in Figure 1. It proposes four determinants to satisfaction with the use of the online video presentation learning method. Our choices of constructs are based on our earlier discussion of the importance of examining any changes to the social learning structure brought on by the new method, as well as the new benefits that can be derived from the technologies unique characteristics (Reychav et al. 2013).

These four proposed determinants are divided into two groups. The first concerns benefits of the online method compared to traditional methods in relation to improving the learning process, namely reduction of social comparison bias and enhanced group participation. The second addresses improvements to the learning outcomes resulting from the unique characteristics of the online video method. The two constructs examined in this group are product originality and product demonstrability. To test our research model, we conducted an empirical study where students are asked to create recorded online video presentations to substitute for face-to-face in-class presentations. Collectively, this group of four constructs represents what we believed to be salient and important determinants of satisfaction with the new method.

In other words, unlike traditional adoption models that focus only on outcome-based or utilitarian based variables to predict adoption of new technologies, we also focus on the benefits of the technology/method in regards to the “process”. Within each group of determinants, we have chosen constructs that are both relevant and often unique to the examined context. For instance, the “comparison bias” construct is uniquely relevant to the context of learning. Similarly, the construct of “group participation” is only relevant in contexts in which the technology/method facilitates group work and communication. The two product/outcome-based constructs examined are also salient and very relevant to the context of IT-mediated learning. Rather than focusing on
whether the technology/method allows students to produce an overall “better” presentation, we focus on aspects of product/outcome quality that are salient, but also are unique outcomes of using this technology/method.

![Research Model](image)

Figure 1. Research Model

We have chosen this context for a number of reasons. First, given the widespread use of multimedia, video conferencing, and virtual world technologies in today’s work environment, we believe that such a blended learning technique will better prepare students for the workplace. Similar to the essential communication skills that face-to-face presentations teach students, this method of learning teaches students to communicate via new media. Second, in light of research emphasizing the effects of enjoyment and hedonic factors on the success of new learning methods (e.g., Guo et al. 2013), we believe that this context would be most enjoyable to students, thus enhancing their learning (Roodt and De Villiers 2011; 2013). Finally, it is our belief that this method itself has inherent educational value. By learning how to create and publish multimedia content, students are adding new skills to their arsenal. Needless to say, if these skills are to be taught to students, they should be a part of their information systems education.

Process-based Effects

Learning is a process. Hence, improving this process can enhance learning outcomes, increase student commitment and attention (Saadé and Bahli 2005; Steiner et al. 2013), and subsequently improve learning satisfaction (Guo et al. 2013). This has been widely recognized in online learning literature, where researchers have paid attention to the hedonic and social aspects of online learning methods, in addition to their utilitarian value.

In this study we focus on two variables that we believe can enhance learning in groups and amongst peers. First, we focus on what is termed social comparison bias (Festinger 1954). In our context, this construct refers to the ability of an online learning method to reduce the effects of comparing one’s performance to others in the class. In the context of the video presentation method, this means a lower tendency to compare one’s presentation with others.

In traditional in-class presentation settings, different presentations are presented in sequence. This potentially can give rise to order-effects when presentations are evaluated (e.g., evaluation fatigue), and more importantly, to apprehension when others’ work is presented ahead of one’s
Satisfaction with Online Video Presentations

own. In contrast, online presentations are presented to their intended audience all at the same time, and are created without any prior knowledge of others’ work. In addition to the obvious advantages that this has in reducing apprehension, we believe that the method’s ability to reduce comparison bias allows students to put their best foot forward, and increase their confidence without any regard to other’s products. Hence, we propose that reduction of comparison bias enhances satisfaction with the method.

H1: The ability of the online method (i.e., online video presentations) to reduce comparison bias (compared to face-to-face learning) enhances students’ satisfaction with the method.

Another important aspect of the learning process is interactions with other students in the classroom. In modern learning settings, group and peer learning is common practice, and has been shown to elevate perceived learning (Alavi, 1994). Yet, despite the popularity of such learning techniques, differential participation in group learning remains to be a problem. While obvious causes of this may include reasons such as shyness or self-presentation biases, the instructor’s ability to employ methods that encourage students to participate in group learning is a crucial factor.

While findings concerning the efficacy of technology-mediated communication compared to traditional face-to-face communication in collaborative learnings are mixed, recent evidence suggests that peer communication via accepted and familiar technologies can have net positive results. For instance, recent findings have supported that the use of social media for communication amongst students, or between students and their instructors, is perceived as useful and fun (Roodt and De Villiers 2013). Other work has demonstrated that the ability of a technology to allow for unique modes of collaboration can further enhance learning and group outcomes (Arbaugh 2004; Baker-Eveleth et al. 2007).

In this paper, we adopt the view that for a new learning technology to be successful, it has to enable students to communicate and collaborate effectively. Once this is achieved, the technology is then able to facilitate higher levels of group participation. This will subsequently lead to improved learning outcomes as well as enhanced satisfaction. Hence, we propose that the extent to which the online method can enhance group participation will enhance its value and students’ satisfaction with it.

H2: The ability of the online method (i.e., online video presentations) to increase group participation (compared to face-to-face learning) enhances students’ satisfaction with the method.

Outcome-based Effects

Another important dimension for evaluating learning methods is their ability to enhance student learning. In online learning contexts, researchers have often focused on the effectiveness of the method in terms of eventual student performance. These evaluative measures included the perceived ability of the method to enhance performance in a course (Saadé and Bahli 2005), perceived learning (Chen et al. 2010), actual learning success (Bitzer et al. 2013), and perceived utilitarian value (Guo et al. 2013), amongst others. These evaluations were subsequently shown to exert effects on subsequent evaluations, satisfaction with the method, or even reuse intentions.

Similar to this research, we believe that the ability of the online video presentation method to enhance learning outcomes will act as a major driver of student satisfaction with the method. Given that students’ satisfaction is anchored in their own perceptions and evaluations, we focus on two perceived outcome-based benefits of the video presentation method.

Other than the grade assessed, the main outcome of a student presentation is the presentation itself. The quality of this outcome can be assessed by both the presentation’s format and its content. In this study, we focus on product originality as a measure of the quality of the presentation. This refers to the extent to which the method allows students to create presentations that are more creative and original than those that could be created in face-to-face settings. Given that employing multimedia and video technology allows students to add many creative elements such as animations and sound, we believe that the use of video presentation method will be perceived to enhance the presentations originality via improving both its content
and format. These perceptions of an improved and more original presentation would subsequently increase satisfaction with the method. Alternatively, if the method employed is unable to effect tangible improvement in such quality measures as originality, this will reduce satisfaction with it.

H3: The ability of the online method (i.e., online video presentations) to increase the product’s originality (compared to face-to-face learning) enhances students’ satisfaction with the method.

Student presentations are a product that is consumed by others in social settings. Specifically, when a presentation is prepared, it is a product that is consumed by the audience once it is presented to them. In so being, student presentations are no different than any content that is created and consumed by an audience, be that an advertisement, a movie, an article, or a song. The easier and the wider that product is disseminated to intended audiences, the higher the perceived value of that product. The online video presentation method not only allows students to create a more tangible product, but a digital product that can be shared with and consumed by others. We term this product demonstrability, and we define it as the extent to which the method allows the final learning outcome to be demonstrated to and shared with others. We consequently propose that the extent to which a learning method enhances the product’s demonstrability, will increase perceptions of its value, and subsequently satisfaction with it.

H4: The ability of the online method (i.e., online video presentations) to increase the product’s demonstrability (compared to face-to-face learning) enhances students’ satisfaction with the method.

Control Variables
Two variables are used in the study to control for relevant individual differences. First, given that presentations are in video format, experience with creating this type of content is proposed to influence satisfaction with this method of blended learning. In essence, prior experience reduces the amount of new learning that the student has to acquire before completing the task, and thus reduces the required effort. The second control variable concerns prior experience with the delivery medium. In the context of this study, the platform chosen to publish and share the video presentations is Facebook. We propose that prior experience with this medium reduces the effort required to learn how to upload and post videos, and hence, has an effect on satisfaction.

III. METHOD
A field study was conducted to assess the determinants of students’ satisfaction with using online video presentations. Students were asked to create a video presentation and post it to Facebook, to share their findings from their term projects. The project asked students to act as consultants and research a relatively new technology that should be adopted by their fictional client company. The business requirements for the fictional company were communicated by the instructor via a series of separate meetings with each of the groups. A dedicated Facebook group was created for students to communicate regarding their project assignment, and to subsequently post their presentations. All presentations took the form of a 10-minute video, and students were given full control over the content and the format of their videos. While some groups used narrated PowerPoint slides that were later converted to a video, others used animation and original video content that they created. A significant number of the groups integrated multiple formats into their video presentations.

Sample
The sample consisted of 386 students enrolled in an introductory Management Information Systems course at a large public university in North America. Students were in their second or third year of an undergraduate business program. They all have participated in face-to-face regular presentations before. Students worked in groups of 4 or 5, and each group produced one presentation. After all groups uploaded their presentations, they individually watched and rated other groups’ presentations. One-week after all presentations were posted, a questionnaire was administered in which students were asked to evaluate their new experience.
Measures and Data Collection

All measures used in this study are shown in Table 1. The satisfaction measure was based on Cenfetelli et al. (2008), who adapted the scale proposed by Bhattacherjee (2001) to the context of online experiences. Two new scales measuring product demonstrability and product originality were developed. The new measures were based on the two scales proposed by Moore and Benbasat (1991) to measure result demonstrability and relative advantage of new technology. The two constructs of group participation and comparison bias were both measured using newly developed scales consistent with their definitions. Student experience with Facebook and creating video content were each measured using one item.

Table 1. Measurement Items

<table>
<thead>
<tr>
<th>Construct</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Participation*</td>
<td>GP1: Encouraged equal participation among group members</td>
</tr>
<tr>
<td></td>
<td>GP2: Encouraged initiative-taking by group members</td>
</tr>
<tr>
<td></td>
<td>GP3: Induced me to work closely with my group members</td>
</tr>
<tr>
<td>Comparison Bias*</td>
<td>CB1: Reduced my tendency to compare my presentation to other presentations in class</td>
</tr>
<tr>
<td></td>
<td>CB2: Allowed us to create a presentation without being influenced by other presentations in class</td>
</tr>
<tr>
<td></td>
<td>CB3: Ensured that we would not get intimidated by other good presentations in class</td>
</tr>
<tr>
<td>Product Originality*</td>
<td>PO1: Allowed us to create a more original presentation</td>
</tr>
<tr>
<td></td>
<td>PO2: Allowed us to create a more creative presentation</td>
</tr>
<tr>
<td></td>
<td>PO3: Allowed us to create a more substantive presentation</td>
</tr>
<tr>
<td>Product Demonstrability*</td>
<td>PD1: Allowed us to create something that we can share with others (e.g., friends, potential employers)</td>
</tr>
<tr>
<td></td>
<td>PD2: Allowed us to create a more tangible presentation</td>
</tr>
<tr>
<td></td>
<td>PD3: Allowed us to create a presentation for a wider audience</td>
</tr>
<tr>
<td>Satisfaction**</td>
<td>ST1: Satisfied</td>
</tr>
<tr>
<td></td>
<td>ST2: Delighted</td>
</tr>
<tr>
<td></td>
<td>ST3: Pleased</td>
</tr>
<tr>
<td>Expertise - Facebook</td>
<td>EF: I am comfortable with using Facebook</td>
</tr>
<tr>
<td>Expertise - Video</td>
<td>EV: I am comfortable with creating online video content</td>
</tr>
</tbody>
</table>

* Items prefixed with “Compared to creating in-class presentations, creating an online presentation …”
** Items prefixed with “Overall, how do you feel about doing online video presentations?”

All items were measured using a 5-point Likert scale ranging from “strongly disagree” to “strongly agree”. To ensure that students’ responses compare this new experience to regular in-class presentations, items were prefixed with “Compared to creating in-class presentations, creating an online presentation …”. Students’ responses were collected using paper-based questionnaires. Participation was voluntary. All responses were then coded and inputted electronically.

IV. RESULTS

An assessment of the measurement model properties and an analysis of the structural model were performed using Partial Least Squares (PLS) with SmartPLS 2.0 (Ringle, Wende, and Will 2005).
Measurement Model

To examine the individual item reliability, we looked at the loadings of the individual measurement items on their intended constructs depicted in Table 2. All loadings exceeded the recommended tolerance of 0.70 (Barclay, Thompson, and Higgins 1995).

The diagonal elements in Table 3 represent the square root of average variance extracted (AVE), providing a measure of the variance shared between a construct and its items. A rule for assessing discriminant validity requires that the square root of AVE be larger than the correlations between constructs, i.e., the off-diagonal elements in Table 3 (Barclay et al. 1995). All constructs met the discriminant validity requirement. Another criterion for adequate discriminant validity requires that loadings of indicators on their respective latent variables are higher than loadings of other indicators on these latent variables, and the loadings of these indicators on other latent variables. As shown in Table 2, this condition for discriminant validity was also met.

Table 2. Item Loadings and Cross Loadings

<table>
<thead>
<tr>
<th>Items</th>
<th>CB</th>
<th>GP</th>
<th>PO</th>
<th>PD</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Bias (CB1)</td>
<td>0.75</td>
<td>0.22</td>
<td>0.28</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>Comparison Bias (CB2)</td>
<td>0.84</td>
<td>0.22</td>
<td>0.26</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td>Comparison Bias (CB3)</td>
<td>0.88</td>
<td>0.22</td>
<td>0.33</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>Group Participation (GP1)</td>
<td>0.22</td>
<td>0.83</td>
<td>0.40</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>Group Participation (GP2)</td>
<td>0.19</td>
<td>0.80</td>
<td>0.38</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>Group Participation (GP3)</td>
<td>0.25</td>
<td>0.81</td>
<td>0.41</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>Product Originality (PO1)</td>
<td>0.29</td>
<td>0.36</td>
<td>0.91</td>
<td>0.42</td>
<td>0.34</td>
</tr>
<tr>
<td>Product Originality (PO2)</td>
<td>0.29</td>
<td>0.39</td>
<td>0.86</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td>Product Originality (PO3)</td>
<td>0.34</td>
<td>0.31</td>
<td>0.85</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>Product Demonstrability (PD1)</td>
<td>0.30</td>
<td>0.30</td>
<td>0.35</td>
<td>0.84</td>
<td>0.41</td>
</tr>
<tr>
<td>Product Demonstrability (PD2)</td>
<td>0.32</td>
<td>0.35</td>
<td>0.45</td>
<td>0.84</td>
<td>0.41</td>
</tr>
<tr>
<td>Product Demonstrability (PD3)</td>
<td>0.32</td>
<td>0.36</td>
<td>0.41</td>
<td>0.86</td>
<td>0.41</td>
</tr>
<tr>
<td>Satisfaction (ST1)</td>
<td>0.34</td>
<td>0.40</td>
<td>0.34</td>
<td>0.43</td>
<td>0.95</td>
</tr>
<tr>
<td>Satisfaction (ST2)</td>
<td>0.37</td>
<td>0.31</td>
<td>0.44</td>
<td>0.42</td>
<td>0.94</td>
</tr>
<tr>
<td>Satisfaction (ST3)</td>
<td>0.39</td>
<td>0.35</td>
<td>0.48</td>
<td>0.44</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table 3. Construct Correlations and Discriminant Validity

<table>
<thead>
<tr>
<th>Items</th>
<th>Mean</th>
<th>STD</th>
<th>CR</th>
<th>CA</th>
<th>CB</th>
<th>GP</th>
<th>PD</th>
<th>PO</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Bias (CB)</td>
<td>3.28</td>
<td>0.91</td>
<td>0.87</td>
<td>0.77</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Participation (GP)</td>
<td>3.46</td>
<td>0.82</td>
<td>0.85</td>
<td>0.75</td>
<td>0.27</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Originality (PO)</td>
<td>3.58</td>
<td>0.98</td>
<td>0.91</td>
<td>0.84</td>
<td>0.35</td>
<td>0.48</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Demonstrability (PD)</td>
<td>3.58</td>
<td>0.84</td>
<td>0.88</td>
<td>0.80</td>
<td>0.41</td>
<td>0.40</td>
<td>0.60</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Satisfaction (ST)</td>
<td>3.20</td>
<td>1.04</td>
<td>0.97</td>
<td>0.95</td>
<td>0.42</td>
<td>0.44</td>
<td>0.56</td>
<td>0.58</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Note: Composite reliability = CR; Cronbach’s alpha = CA; diagonal elements are the square root of AVE.

Composite reliability and Cronbach’s alpha are reported in Table 3. Since the values for internal consistency were all above the suggested minimum of 0.70 (Fornell and Larcker 1981), the internal consistency criteria are met.
To address the potential concern of common method bias from the use of a questionnaire to measure students’ responses, we conducted an exploratory factor analysis and applied the Harman (1967) one-factor extraction test. The analysis found four factors with eigenvalues greater than one, and confirmed that no single factor can explain a majority of the variance (the first factor explained 43% of the variance).

Structural Model Results

Table 3 shows the means and standard deviation for all the constructs in the model. These results reveal that on average, compared to face-to-face presentations, online video presentation are perceived to be more effective at reducing comparison bias ($M = 3.28$), increasing group participation ($M = 3.46$), enhancing the presentation’s originality ($M = 3.58$) and demonstrability ($M = 3.58$), as well as resulting in higher satisfaction levels ($M = 3.20$).

![Figure 2. Structural Model Results](image)

An analysis of the proposed model was performed. The results are depicted in Figure 2. Consistent with hypothesis 1, reduction in the potential for comparison bias enhances satisfaction with the use of recorded online video presentations ($\beta = 0.16$, $p < 0.01$). Similarly, the increased group participation and cohesion driven by the use of recorded online video presentations acts as another driver of satisfaction with this method ($\beta = 0.14$, $p < 0.01$). Hence, hypothesis 2 is also supported.

The two variables concerning characteristics of the resultant presentation exerted the strongest effects on satisfaction. The ability to create a more creative and original presentation enhanced students’ satisfaction ($\beta = 0.30$, $p < 0.01$). Likewise, the ability to demonstrate and share the final product with others enhanced satisfaction with the online video method ($\beta = 0.23$, $p < 0.01$). Correspondingly, hypotheses 3 and 4 are both supported.

The two control variables had statistically significant effects on satisfaction. Both the students’ experience with Facebook and their experience with creating video content enhanced their satisfaction with the online video presentation method ($\beta = 0.06$, $p < 0.05$; $\beta = 0.11$, $p < 0.01$, respectively). Collectively, the four antecedents and the two control variables explained 47% of the variance in satisfaction.
V. DISCUSSION

The results of the study highlight a number of important issues concerning the use of blended learning methods in general, and the use of video presentations in specific. First, this study confirms that online learning methods can achieve higher satisfaction levels than traditional means of learning. Nonetheless, satisfaction with online learning in a blended learning context is only achieved by choosing methods that can add clear advantages in terms of the process as well as the outcomes of learning.

The findings suggest that the extent to which a chosen method can reduce social biases, such as social comparison bias, and enhance the learning environment, plays a role in driving satisfaction with the method. This is especially important in today’s settings of social learning, where peer learning is essential.

The results of this study further highlight the role of online methods in enhancing group participation, and subsequently, satisfaction with the learning method. This is especially important for such methods that require the coordinated efforts of all group members. They further allow for individuals to contribute in a variety of ways, and hence, take advantage of individual core competencies. From a practical perspective, these results suggest that additional benefits can be attained when online methods are applied in group learning contexts.

The large effects of the characteristics of the final product on satisfaction affirm the importance of the utilitarian benefits of the blended learning method. In the context of this study, the online method was not only able to allow students to create a more original presentation, but also one they could share with others. The latter, which is enabled by the use of social media as a platform for sharing the presentations, adds a new dimension to the learning process. Not only are the other students in the class a part of this learning process, but also are now their families and friends.

The results concerning the effects of the two control variables on satisfaction stress the importance of choosing online methods that are familiar to students. As demonstrated by the effects of product demonstrability and originality on satisfaction, the use of video and social media enhances students’ perceptions of learning outcomes. Yet, the use of familiar media and technologies has the added advantage of effort reduction, and further enhancing satisfaction.

A clear limitation of the study is the self-reported nature of the recorded responses. Given the nature of the constructs examined in this study, e.g., satisfaction and group participation, there was no feasible means for the researchers to collect objective measures of these constructs.

VI. CONCLUSION

The current study has provided evidence concerning the efficacy of the online video presentation method. It has further confirmed that satisfaction with this method can be enhanced by paying attention to both process and outcome variables. These findings have clear and significant implications to the use of such methods in blended learning environments. More importantly, they highlight the need to pay careful and conscious attention to the context in which the new online leaning method is applied, as understanding the context allows for the identification of the correct drivers of satisfaction.

Future research should focus on testing the model in other similar settings. With the ever-increasing use of social media in class settings, there is a need to identify relevant social benefits that can be enhanced via the use of online learning methods. The current study has shown that the use of online methods can help in reducing social biases, such as comparison bias, and enhance group participation. Similarly, the current study has highlighted how the use of online learning can have clear utilitarian benefits such as improving the quality of the presentation. Other outcome-based benefits are also possible when other methods are employed, and future research should work to identify them.
Finally, while the current study has focused on students’ perceptions regarding process and outcome variables, the question of whether the use of the online video presentation method objectively enhances student performance remains unanswered. To answer this question, an experimental approach that allows for a controlled comparison between the online method and traditional methods is needed. Similarly, while this study has confirmed that the use of the online video presentation method can enhance students’ perception regarding the quality of their presentations, it remains to be seen if this also enhances student learning when watching video presentations created by other groups.\(^1\)

ACKNOWLEDGEMENTS

The authors would like to thank the American University of Sharjah Faculty Research Grants fund for their support of this research.

REFERENCES

\(^1\) As a part of this study, we have also collected data regarding students’ perceptions while watching others’ online video presentations. The results indicated that on average, students felt that the video presentation method was a more effective and enjoyable learning tool, in addition to introducing an informal learning atmosphere.

ABOUT THE AUTHORS

Carson Woo is an Associate Professor of IS at the Sauder School of Business at the University of British Columbia. He obtained his Ph.D. in Computer Science from the University of Toronto in 1988. His research focuses on Systems Analysis and Design, and he has published articles in premier journals, such as MIS Quarterly and Requirements Engineering.

Sameh Al-Natour is an Assistant Professor of MIS at the American University of Sharjah. He obtained his Ph.D. and M.Sc. from the University of British Columbia, and an M.B.A and a B.S from Simon Fraser University. His research focuses on the design and evaluation of human-computer interfaces, and the adoption and use of information technology.